Search Documentation

Search Documentation

SUG Conference - April 20, 2023

Agenda

Ascend

The following are technical specifications for Ascend.  

Number of Nodes

24 nodes

Number of CPU Sockets

48 (2 sockets/node)

Number of CPU Cores

2,304 (96 cores/node)

Cores Per Node

96 cores/node (88 usable cores/node)

Internal Storage

12.8 TB NVMe internal storage

Ascend

For more information about citations of OSC, visit https://www.osc.edu/citation.

To cite Ascend, please use the following Archival Resource Key:

ark:/19495/hpc3ww9d

Please adjust this citation to fit the citation style guidelines required.

Ascend

AMDBLIS is a portable, open-source software framework for instantiating high-performance Basic Linear Algebra Subprograms (BLAS), such as dense linear algebra libraries. The framework was designed to isolate essential kernels of computation that, when optimized, immediately enable optimized implementations of most of the commonly used and computationally-intensive operations.

Ascend

NVHPC, or NVIDIA HPC SDK, C, C++, and Fortran compilers support GPU acceleration of HPC modeling and simulation applications with standard C++ and Fortran, OpenACC® directives, and CUDA®. GPU-accelerated math libraries maximize performance on common HPC algorithms, and optimized communications libraries enable standards-based multi-GPU and scalable systems programming.

Ascend

The AMD Optimizing C/C++ and Fortran Compilers (“AOCC”) are a set of production compilers optimized for software performance when running on AMD host processors using the AMD “Zen” core architecture.  Supported processor families are AMD EPYC™, AMD Ryzen™, and AMD Ryzen™ Threadripper™ processors.  The AOCC compiler environment simplifies and accelerates development and tuning for x86 applications built with C, C++, and Fortran languages.

Ascend

Users who would like to use the Ascend cluster will need to request access.  This is because of the particulars of the Ascend environment, which includes its size, GPUs, and scheduling policies.

Motivation

Access to Ascend is done on a case by case basis because:

Ascend

These are the public key fingerprints for Ascend:
ascend: ssh_host_rsa_key.pub = 2f:ad:ee:99:5a:f4:7f:0d:58:8f:d1:70:9d:e4:f4:16
ascend: ssh_host_ed25519_key.pub = 6b:0e:f1:fb:10:da:8c:0b:36:12:04:57:2b:2c:2b:4d
ascend: ssh_host_ecdsa_key.pub = f4:6f:b5:d2:fa:96:02:73:9a:40:5e:cf:ad:6d:19:e5

Ascend, Owens, Pitzer

The NVIDIA Collective Communication Library (NCCL) implements multi-GPU and multi-node communication primitives optimized for NVIDIA GPUs and Networking. NCCL provides routines such as all-gather, all-reduce, broadcast, reduce, reduce-scatter as well as point-to-point send and receive that are optimized to achieve high bandwidth and low latency over PCIe and NVLink high-speed interconnects within a node and over NVIDIA Mellanox Network across nodes.

Ascend

Compilers

C, C++ and Fortran are supported on the Ascend cluster. Intel, oneAPI, GNU, nvhpc, and aocc compiler suites are available. The Intel development tool chain is loaded by default. Compiler commands and recommended options for serial programs are listed in the table below. See also our compilation guide.

Pages