The cornerstone of the Ohio Supercomputer Center's Summer Institute is the projects. The students work together in small teams on diverse and challenging research-level projects. Teams are comprised of a project leader (staff member who conceived and designed the project) and three or four students.

View past projects

This year's project options are:

1) Lab-on-a-chip Nanofluidics - more info

The goal of new lab-on-a-chip nanotechnology is to shrink today’s diagnostic equipment onto chips that are about a million times smaller.  In the medical field, this offers the possibility of diagnostics based on ultra-small samples, single-cell analysis, and portable devices for rapid and accurate bedside diagnosis of conditions like heart disease and cancer.   An ordinary pathology lab involves mixing samples and chemicals, and moving them into position for analysis.  These same functions must be performs on lab-on-a-chip devices.  Therefore, we need reliable methods for transport of fluids and biomolecules in nanoscale structures.

You will explore one of the most promise methods of fluid transport in nanostructures, electroosmotic flow (EOF).  The principle behind EOF is simple:  Most surfaces carry an electrical charge.  That means there must be charge of the opposite sign somewhere to compensate the surface charge.  For example, ordinary glass has a strong negative charge, and there is always a compensating layer of positively-charged fluid containing ions like Na+ or K+ near the surface.  Application of a voltage to the positively-charged fluid causes fluid flow known as electroosmotic flow (EOF).  The advantage of EOF is that fluid flow is under precise electrical control without the use of mechanical pumps.

You will explore how surface charge, surface roughness, and salt concentration affect electroosmotic flow, and draw conclusions about the conditions for optimal efficiency.  You will compare detailed molecule simulations with continuum models of fluid flow like the Navier-Stokes equation. (Click on the image above to see an example animation)

2) Image Processing - More Info

This project involves a real world application of finding comets in sun observation images from the SOHO (Solar and Heliospheric Observatory) spacecraft.ScreenShot:  Comets

SOHO is a cooperative mission between the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). SOHO studies the sun from deep down in its core out to 32 solar radii. The spacecraft orbits the L1 Lagrangian point. From this orbit, SOHO is able to observe the sun 24 hours a day. Even though SOHO's primary objectives relate to solar and heliospheric physics, the onboard LASCO instrument has become the most prolific comet discoverer in history!

LASCO (Large Angle Spectrometric Coronagraph) is able to take images of the solar corona by blocking the light coming directly from the Sun with an occulter disk, creating an artificial eclipse within the instrument itself. LASCO images are automatically posted on the web approximately every 20 minute. Since LASCO began taking observations in January of 1996, the C2 and C3 coronagraphs have observed over 950 new comets and 9 known comets. The vast majority of these comets were discovered by amateur astronomers who closely examine the images for potential comets. Below is a typical image recently taken by SOHO.

3) Cancer Cell Migration, Invasion and Metastasis

Cancer is a major cause of death in the United States and the spread of cancer cells from a primary tumor to other organs, i.e. metastasis, is the key feature that leads to high mortality. For example, women with localized breast tumors have a 98% 5-year survival rate. However, metastasis of local breast tumors to other organs leads to a very low 23% survival rate. Metastasis involves the detachment of epithelial cells from the primary tumor, cell migration into the surrounding tissue, cell invasion into blood/lymphatic vessels and colonization of distal organs. One biological mechanism responsible for metastasis is known as epithelial to mesenchymal transition (EMT). EMT is a form of cell-plasticity (i.e. stem cell like behavior) where non-motile epithelial cells get converted into a highly migratory/invasive mesenchymal cell. EMT is normal assessed by measuring the activity of certain genes that are modulated during the transition. Unfortunately, many of these gene markers are non-specific and do not undergo consistent changes during metastasis. Furthermore, these markers do not provide a quantitative way to determine the degree of EMT and/or the metastatic potential in a given patient.

Recently, our laboratory has demonstrated that cancer cells undergo dramatic biomechanical and structural changes during EMT (see Figure 1). Not only are these biomechanical changes are highly-specific, since characterizing cell/tissue mechanics is a clinical viable diagnostic technique, these changes in cell mechanics represents a novel way to quantitatively assess the degree of EMT. However, it is not well understood how changes in cell mechanics facilitate or alter the cell migration and invasion processes required for metastasis. We have therefore started to develop sophisticated multi-scale computational models to investigate how changes in different cell biomechanical properties influence cancer cell migration and metastasis (see Figure 2). These models can simulate both the detachment of cancer cells from the primary tumor and their migration/invasion into surrounding tissues. For the summer projects, students will first be exposed to the computational tools used to create models of cancer cell migration and invasion (i.e. finite element modeling). The student team will then be ask to model a very specific and important step in metastasis where cancer cells that have detached from the primary tumor must squeeze through pores in the extracellular matrix and invade through a thin layer of endothelial cells to enter the blood stream. Two PhD students from Dr. Ghadiali’s lab will be available to help students set-up initial models and analyze model results. These students will also describe how they are using computational techniques to advance their PhD research programs.

Sponsored in part by NSF grant 1134201

4) Networking Design and Engineering

The Ohio Academic Resources Network (OARnet) was created in 1987 to provide Ohio researchers with their first "online" access to the high performance computing resources of the newly established Ohio Supercomputer Center. Map of OARnet ommunitiesExponentially increasing demand from college and university researchers for statewide connectivity and increased bandwidth led to the acquisition of dark fiber to create a highly scalable, fiber-optic communications infrastructure, launched in November 2004. The new network was referred to as the Third Frontier Network and, later, OSCnet, both for a period when OARnet operated as the networking division of the Ohio Supercomputer Center. Today, the OARnet network consists of more than 1,850 miles of fiber-optic backbone, with more than 1,500 miles of it operating at ultrafast 100 Gbps speeds. The network blankets the state, providing connectivity to Ohio's colleges and universities, K-12 schools, public broadcasting stations, academic medical centers, government agencies, and partnering research organizations (read more at

In this project we will investigate the components and technologies used to build and maintain large-scale, high performance, data networks. The project team’s goal is to design and implement a ‘Summer Institute’ (SI) network, Fiber opticswhich will interface with the OARnet backbone for connectivity to both the Internet and Internet2 ( The team’s network will be a redundant, multi-vendor environment (built using both Juniper and Cisco equipment), similar in architecture to many higher education campuses or research group infrastructures that connect to OARnet. Once the SI network is in place, the team can perform end-to-end tests between machines in their environment and test remote points located throughout OARnet’s backbone, to ‘baseline’ their network’s performance. This testing will give the project team an opportunity to explore a range of different network technologies (10Mbps-10Gbps Ethernet & DWDM) and dynamic routing protocols (OSPF & BGP). The team can observe the impact of link failure on a high-availability network, measure the characteristics of a fiber-optic cable, and gain hands-on experience with many of the tools and components used to build and maintain OARnet’s 100Gbps backbone.

5) The Physics of Addicting Video Games

Physics Game
                    Click here to play the game.

Some of the most entertaining video games and smartphone apps incorporate surprisingly realistic physics models. Games like Angry Birds, for example, have spring models and projectile motion not unlike the kind of physics problems that students encounter in introductory courses. In this project you will work through a tutorial on how to program simple but very fun games that include realistic physics. After finishing these tutorials, you can look around the internet at sites like, and to see other examples of the kind of physics-inspired games that are out there. Students will choose to try and emulate one of these “interactives” or design something entirely new. OSU physics professors Chris Orban and Annika Peter will be on hand to help, as will graduate students from the department of physics. These tutorials are designed for absolute-beginner level programmers. But more experienced programmers will also have a fun time with this project (which uses the framework).

At OSU the physics and astronomy departments work closely together and as an added bonus, participants in this project will receive a tour of the astronomy department including the instrument fabrication lab. Prof. Lisa Hall in OSU's new Chemical and Biomolecular Engineering Building will also host students and show visualizations of her molecular dynamics simulations.