

Ohio Supercomputer Center

An **OH**·**TECH** Consortium Member

Feb 2014 HPC Tech Talk

Agenda

- Mission
- WebEX tips
- Overview of service changes
- Attendee-driven discussion
- "Tech Notes" (30 minutes) GPU utilization at OSC for computational chemistry
- Slides are available at
 - http://www.osc.edu/tech_talks

Mission

- We want to better engage the daily users of the system
- Provide another avenue for the community to raise issues and talk about unmet needs.
- This event is for you! Please ask questions, make comments, and provide feedback as to how these can be improved to better serve you.

WebEX tips

- You can use the "Raise hand" icon to ask a question or make a comment (this will notify us so that we can acknowledge you)
- You may also use the Q&A section to ask questions.
- Please mute your microphones when not talking, to avoid feedback and interference noises.

Downtime Summary

- Updated Red Hat Enterprise Linux (RHEL) operating system on all clusters to newer version
 - The Glenn cluster is now running RHEL 5.10, and Oakley is running RHEL 6.5
 - If something no longer works as before, this may be the culprit. Feel free to email oschelp@osc.edu
- GPFS upgrades
 - Much faster I/O speeds, for those of you who have allocations on /nfs/gpfs.

Ohio Supercomputer Center

Ohio Technology Consortium A Division of the Ohio Board of Regents

H·I'ECH

Software Updates

- LS-DYNA 971-R7.0.0 now available on Glenn
- Gaussian license has been renewed
- Intel Compilers and the mvapich2 MPI library are updated regularly on Oakley
 - most recent Intel compiler module is intel/14.0.0.080
 - latest stable mvapich2 release is mvapich2/1.9
- Hybrid MPI/SHMEM or MPI/UPC programming for friendly users with mvapich2-x on Oakley, contact <u>ktomko@osc.edu</u> for more information

Ohio Supercomputer Center

Ohio Technology Consortium A Division of the Ohio Board of Regents

Module changes for ANSYS/Abaqus

- Main modules updated to direct users to the correct license server
- Old modules have been deprecated
 - Will be removed in the future
- Effective on both clusters
- I.e., use module Load abaqus/6.12 instead of module Load abaqus/6.12-nimbis or similar (Oakley syntax)

Updated software pages

- Now capable of filtering by cluster or by application area.
 - http://www.osc.edu/supercomputing/software

Software by Field		
Field of Science Mechanical Engineering		
ANSYS CFX	FLUENT OpenFOAM	STAR-CCM+

Ohio Supercomputer Center

Slide 8

SUG Software Focus Groups

- We'd like your input on decisions regarding software installed for general use (via modules) on our systems
- An invitation to participate will be sent out to users in the next few weeks, or send email to Karen Tomko, <u>ktomko@osc.edu</u>
- Establishing several initial focus groups:
 - Bio informatics/Bio Sciences
 - Fluid Dynamics
 - Structural mechanics

- Quantum Chemistry/ Materials
- Physics
- Atmospheric and Environmental Modeling

Ohio Supercomputer Center

Slide 9

New Identity Management Site

- Password and shell changes are no longer performed on ARMSTRONG.
- Accounts can be recovered via email if you have forgotten your password.
- You can change your email address
- If your name is not correct when you log in, contact OSC Help!
- https://my.osc.edu/

Glenn is still in production!

- Long waits on Oakley, but often no wait at all on Glenn
- We can provide assistance in migrating your jobs to Glenn, or helping you decide if you will benefit from switching.
- If there are software packages missing on Glenn that you require, contact OSC Help to have them added.

Ohio Supercomputer Center

Slide 11

Known Issues

- You cannot check your quota on GPFS. No workaround; the quota numbers reported when you log in are calculated once per day.
- Look at the bottom of <u>http://www.osc.edu/supercomputing</u> for up to date issue reporting.

Discussion period

• Floor open to questions of presented material, or for the community to raise other issues to discuss.

Tech Notes

Computational Chemistry on NVIDIA GPUs at OSC Dr. Scott Brozell

Goals

- Increase awareness and facilitate usage of underutilized hardware resources and significant software capabilities
- Obtain community feedback

Outline

- Introduction
- GPU Hardware
- GPU Batch Usage
- GPU Policy
- GPU Enabled Software Applications
 - Molecular Dynamics
 - Electronic Structure
 - Examples

Introduction

- Graphics Processing Unit (GPU)
 - Specialized coprocessor for 3D computer graphics
 - Massively data parallel processing
- General Purpose computing on GPUs (GPGPU)
 - Evolving floating point arithmetic support
 - Single Instruction Multiple Data (SIMD) algorithms
- Compute Unified Device Architecture (CUDA)
 - NVIDIA parallel programming model and toolset
 - Partition computation across hybrid computing platform

Csuri Advanced GPU Environment

HP Intel Xeon
Oakley Cluster

IBM 1350 AMD Opteron
Glenn Cluster

Ohio Supercomputer Center

Slide 18

Batch Usage

- <u>PBS directives</u> and <u>environment variables</u>
 - Oakley
 - #PBS –I nodes=n:ppn=p:gpus=g

- +1 <= n, 1 <= p <= 12, and 1 <= g <= 2

- #PBS –I nodes=n:ppn=12:gpus=2:vis
 - Starts an X server
- \$PBS_GPUFILE
 - Specifies a file containing the allocated GPU identifiers
- Glenn
 - #PBS –I nodes=n:ppn=8:gpu
 - +1 <= n
 - Automatically allocated a whole node of 2 GPUs

Batch Policy

- <u>Scheduling</u>
 - GPU nodes reserved for GPU jobs
 - Except for backfill very short jobs
- <u>Charging</u>
 - No charge for GPUs per se
 - Based on total CPU time
- GPU resources are underutilized

GPU Enabled Software Applications

NVIDIA Computational Chemistry Site

- Complete listing
- Visualization
 - <u>VMD</u>
 - Oakley
 - Automatically detects computational resources
 - qsub –I –X –I nodes=1:ppn=12:gpus=2
 - module load vmd; vmd
 - Automatically recognizes display settings
 - If no display then defaults to text mode
 - glxinfo command reports OpenGL status

- <u>Amber</u>
 - Explicit and implicit solvent simulations
 - <u>Significant speedups</u>
 - Many features
 - Effective GPU only programming model
 - For I/O, one CPU core needed per GPU
 - Oakley nodes=1:ppn=2:gpus=2
 - » pmemd.cuda &; pmemd.cuda &; wait
 - » mpiexec pmemd.cuda.MPI
 - Modest scalability
 - Size limitations
 - Amber 14 planned release in April
 - Improved performance, scaling; more features

- <u>Gromacs</u>
 - <u>4.6 has native GPU acceleration</u>
 - Non-bonded forces calculated on GPUs
 - Explicit and implicit solvent simulations
 - Significant speedups
 - Full featured
 - Hybrid CPU and GPU programming model
 - Use multiple CPU cores per GPU
 - Oakley nodes=n:ppn=12:gpus=2
 - » cutoff-scheme=verlet
 - Modest scalability

• <u>NAMD</u>

- <u>Native GPU acceleration</u>
 - Non-bonded forces calculated on GPUs
 - Explicit and implicit solvent simulations
 - Significant speedups
 - Full featured
 - Hybrid CPU and GPU programming model
 - Use multiple CPU cores per GPU
 - Oakley nodes=n:ppn=12:gpus=2
 - » namd2 +idlepoll
 - Modest scalability

• LAMMPS

- GPU standard package
 - Long-range Coulombics calculated on GPUs
 - Significant speedups
 - Hybrid CPU and GPU programming model
 - Use multiple CPU cores per GPU
 - Oakley nodes=n:ppn=12:gpus=2

• LAMMPS

- USER-CUDA package
 - Long-range Coulombics calculated on GPUs
 - Significant speedups
 - Mostly GPU only programming model
 - For I/O, one CPU core needed per GPU
 - Oakley nodes=1:ppn=2:gpus=2
- <u>GPU versus USER-CUDA</u>
 - Generally USER-CUDA has more features
 - Benchmarking recommended

Electronic Structure Software

- Emerging functionality on GPUs
 - <u>GAMESS</u>
 - RHF, RMP2, RCCSD(T)
 - Modest speedups
 - <u>NWChem</u>
 - Various CCSD subtasks
 - Modest overall speedups
 - Installation of 6.3 is planned
 - <u>Q-Chem</u>
 - RI-MP2
 - Significant speedups
 - Installation and testing in progress

Electronic Structure Software

- GPU functionality coming
 - <u>Gaussian</u>
 - Under development
 - <u>Molpro</u>
 - Density fitting methods: HF, DFT, MP2, etc.
 - Modest overall speedups
 - Purchase request was approved

Example Batch Scripts

- Input files in /nfs/10/srb/workshops/compchem
- Amber Oakley dual GPU:
 - amber/jac9999dualcuda.oakley.pbs
- Amber Oakley parallel GPU:
 - amber/jac1000cudampi.oakley.pbs

Summary

- Powerful GPU resources are underutilized
- Significant HPC GPGPU performance improvements exist in software applications especially in the area of molecular dynamics
- GPU batch policies are very favorable
- Community feedback is encouraged

Q&A

- Any questions?
- oschelp@osc.edu

