Empower. Partner. Lead.

Modeling of Multi-resolution Active Network Measurement Time-series

Prasad Calyam, Ph.D. pcalyam@osc.edu Ananth Devulapalli ananth@osc.edu

Third IEEE Workshop on Network Measurements October 14th 2008

Topics of Discussion

- Background
- Measurement Data Sets
- Time Series Analysis Methodology
- Results Discussion

Conclusion and Future Work

Background

- Internet ubiquity is driving common applications to be networkdependent
 - Office (e.g. Videoconferencing), Home (e.g. IPTV), Research (e.g. Grid)
- ISPs monitor end-to-end Network Quality of Service (QoS) for supporting existing and emerging applications
 - Network QoS metrics: bandwidth, delay, jitter, loss
 - Active measurement tools: Ping, Traceroute, Iperf, Pathchar, ...
 - Inject test packets into the network to measure performance
- Collected active measurements are useful in network control and management functions
 - E.g., Path switching or Bandwidth on-demand based on network performance anomaly detection and network weather forecasting

Challenges in using Active Measurements

- High variability in measurements
 - Variations manifest as short spikes, burst spikes, plateaus
 - Causes: user patterns, network fault events, cross-traffic congestion
- Missing data points or gaps are not uncommon
 - Compound the measurement time-series analysis
 - Causes: network equipment outages, measurement probe outages
- Measurements need to be modeled at multi-resolution timescales
 - Forecasting period is comparable to sampling period
 - E.g., Long-term forecasting for bandwidth upgrades
 - Troubleshooting bottlenecks at timescales of network events
 - E.g., Anomaly detection for problems with plateaus, and periodic bursts

Our goals

- Address the challenges and requirements in modeling multiresolution active network measurements
 - Analyze measurements collected using our ActiveMon framework that is being used to monitor our state-wide network viz., OSCnet
 - Develop analysis techniques in ActiveMon to improve prediction accuracy and lower anomaly detection false-alarms
- Use Auto-Regressive Integrated Moving Average (ARIMA) class
 of models for analyzing the active network measurements
 - Many recent works have suggested suitability for modeling network performance variability
 - Zhou et al., combined ARIMA models with non-linear time-series models to improve prediction accuracy
 - Shu et al., showed seasonal ARIMA models can predict performance
 of wireless network links
 - We evaluate impact of multi-resolution timescales due to absence and presence of network events on ARIMA model parameters

Topics of Discussion

- Background
- Measurement Data Sets
- Time Series Analysis Methodology
- Results Discussion

Conclusion and Future Work

ActiveMon Measurements

- We collected a large data set of active measurements for over 6 months on three hierarchically different Internet backbone paths
 - Campus path on The Ohio State Uni. (OSU) campus backbone
 - Regional path between OSU and Uni. of Cincinnati (UC) on OSCnet
 - National path between OSU and North Carolina State Uni. (NCSU)
- Used in earlier studies
 - How active measurements correlate to network events?

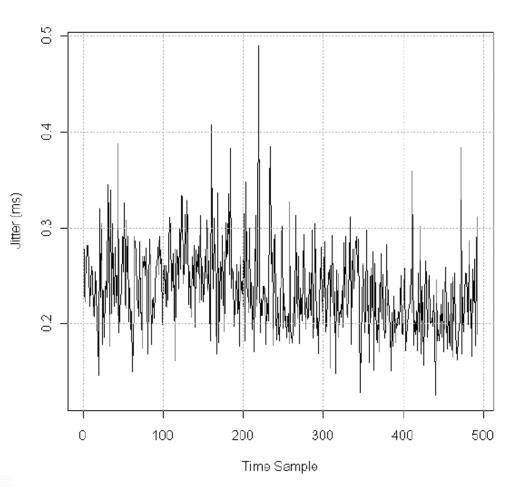
P. Calyam, D. Krymskiy, M. Sridharan, P. Schopis, "TBI: End-to-End Network Performance Measurement Testbed for Empirical-bottleneck Detection", *IEEE TRIDENTCOM*, 2005.

 How long-term trends of active measurements compare on hierarchical network paths?

P. Calyam, D. Krymskiy, M. Sridharan, P. Schopis, "Active and Passive Measurements on Campus, Regional and National Network Backbone Paths", *IEEE ICCCN*, 2005.

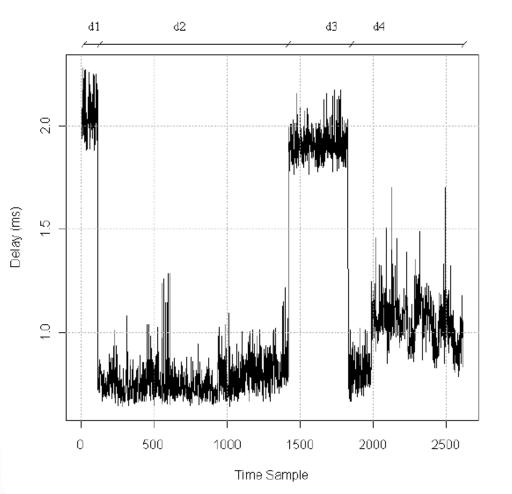
OSC ActiveMon Setup CDMA Devices Router Switch \geq Measurement Server Node Server **On-going Measurements Network Being** SITE-1 SITE-2 Monitored Measurement End-User Anomaly-alarm Results Database, Notification via Email Webserver, Root Server Scheduler, Statistical Analysis **View Measurements** and Visualization Results and Analysis

"Routine" Jitter Measurement Data Set



- Collected between OSU and UC border routers
- Iperf tool measurements over a two-month period
- Iperf probing comprised of UDP traffic at 768 Kbps
- NOC logs indicate no major network events during the two-month period

"Event-laden" Delay Measurement Data Set

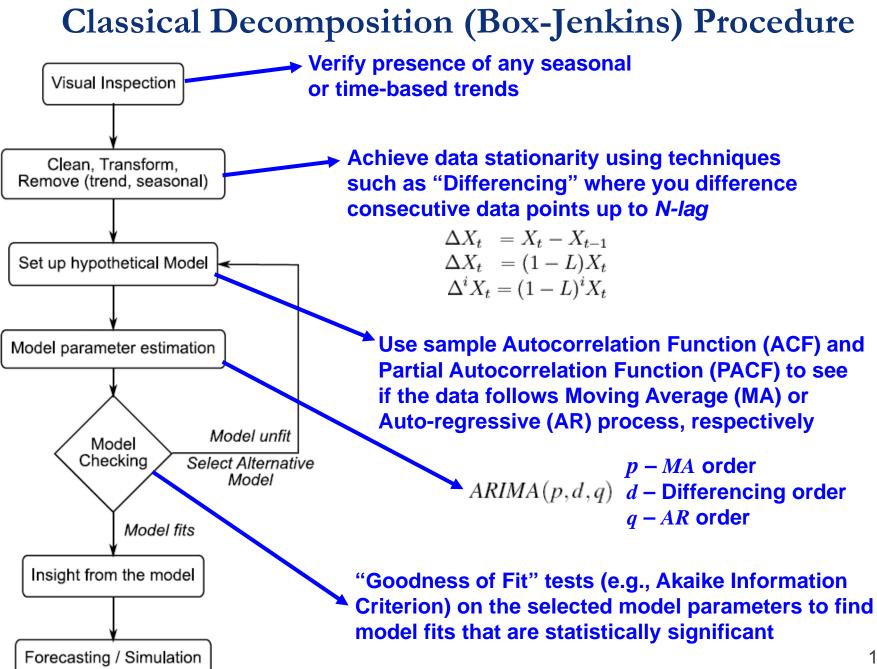


- Collected between OSU border and OSU CS Dept. routers
- Ping tool measurements over a six-month period
- Ping probing comprised of four 32 byte ICMP packets
- NOC logs indicate four routechanges due to network management activities

Topics of Discussion

- Background
- Measurement Data Sets
- Time-series Analysis Methodology
- Results Discussion

Conclusion and Future Work



Two-phase Analysis Approach

- Separate each data set into two parts:
 - 1. Training data set
 - Perform time-series analysis for model parameters estimation
 - 2. Test data set
 - Verify forecasting accuracy of selected model parameters to confirm model fitness
- Routine jitter measurement data set observations
 - Total: 493; Training: 469; Test: 24
- Event-laden delay measurement data set observations
 - Total: 2164; Training: 2100; Test: 64

Topics of Discussion

- Background
- Measurement Data Sets
- Time Series Analysis Methodology
- Results Discussion

Conclusion and Future Work

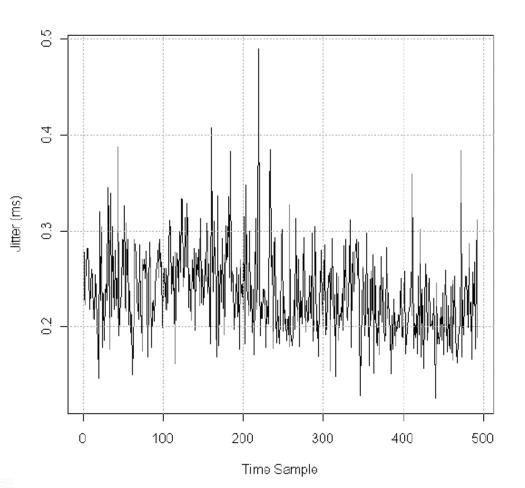
Results Discussion

- <u>Part I:</u> Time-series analysis of the routine jitter measurement data set
- <u>Part II:</u> Time-series analysis of the event-laden delay measurement data set
- <u>Part III:</u> "Parts versus Whole" time-series analysis of the two data sets

Results Discussion

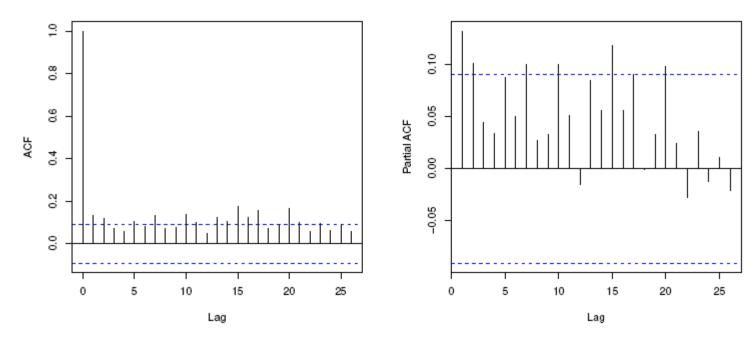
- <u>Part I:</u> Time-series analysis of the routine jitter measurement data set
- <u>Part II:</u> Time-series analysis of the event-laden delay measurement data set
- <u>Part III:</u> "Parts versus Whole" time-series analysis of the two data sets

Preliminary Data Examination



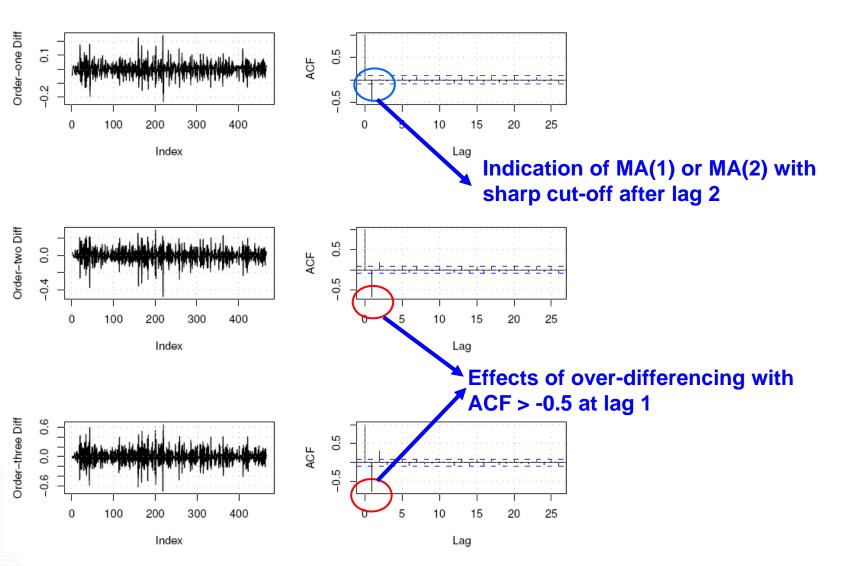
- No apparent trends or seasonality
- Frequent spikes and dips without any specific patterns

ACF and PACF

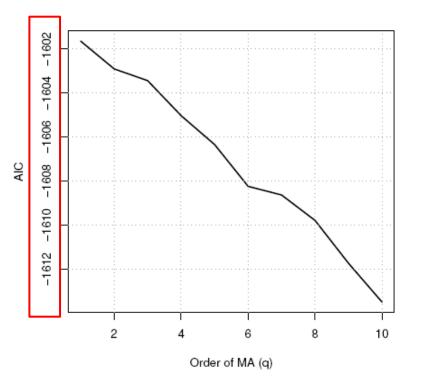


- ACF does not indicate MA
 - No clear cut-off at any lag; ACF is not decaying exponentially
- PACF does not indicate AR
 - PACF is not decaying exponentially
- Inherent trend in data present that is not visually noticeable

ACF after 1-Lag Differencing



Model Fitting

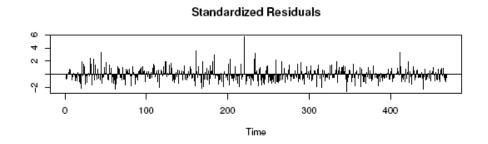


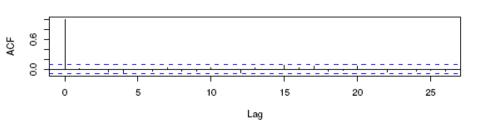
- To verify, we calculate AIC for increasing MA order and see MA(1) has minimum AIC
 - Dip in AIC is not notable for higher model orders i.e., for higher model complexity

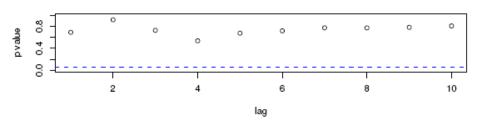
Parameter	Value	95% CI
θ_1	-0.9440	(-0.85286, -1.03514)
θ_2	-0.0123	(-0.135584, 0.110984))
θ_3	-0.0114	(-0.10744, 0.08464)

- To further verify, we compare statistical significance of MA(1) parameter value i.e., θ_1 with higher order values θ_2 and θ_3
- We inspect whether 95% CI values $(\theta_x \pm 1.96 \times \sigma_{\theta_x})$ contain zero
 - 95% CI values of θ_1 are significant because they do not contain zero
 - Thus, we cannot reject the null hypothesis that MA(1) is not the suitable model

Diagnostic Checking of Fitted Model







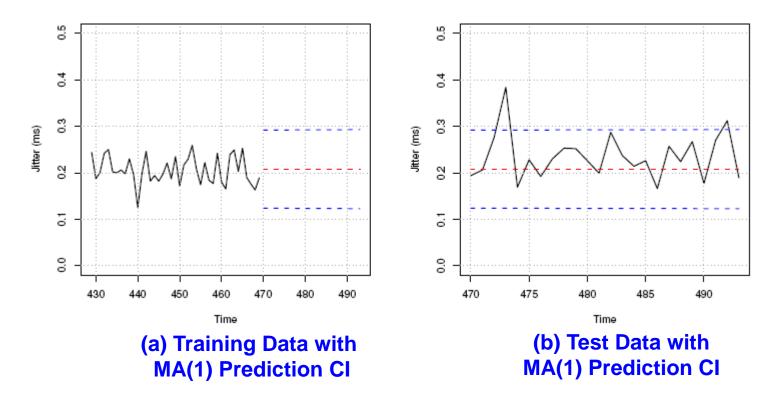
Selected MA(1) Model

- Residuals look like noise process
- ACF of residuals resembles a white noise process
- Ljung-Box plot shows model is significant at all lags

where $Z_i \sim$ White Noise(0, 0.01028) and $X_i = \text{diff}(jitter_i)$

 $X_t = Z_t + (-0.9440)Z_{t-1}$

Prediction Based on MA(1) Model Fitting

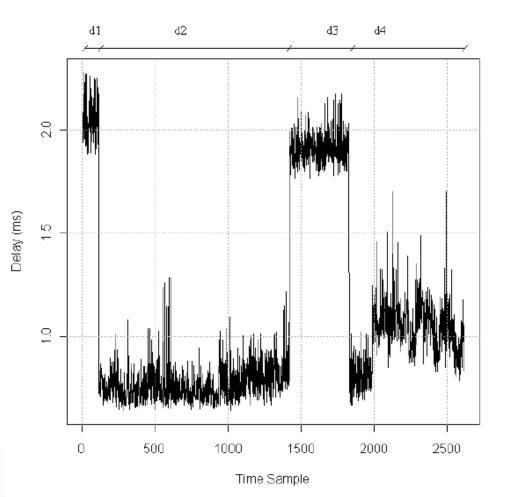


- Model prediction is close to reality
 - Most of the test data, except couple of observations, fall within the MA(1) Prediction Cl

Results Discussion

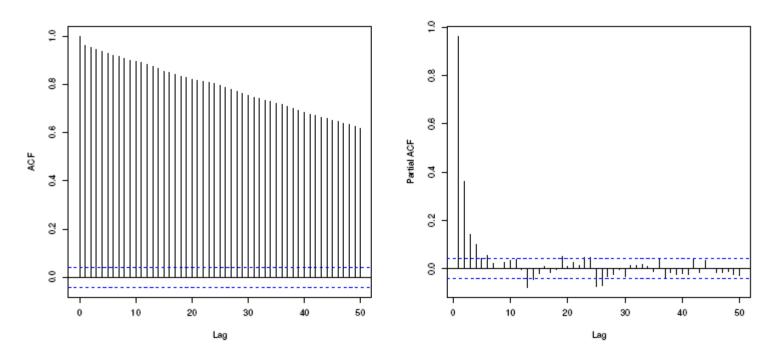
- <u>Part I:</u> Time-series analysis of the routine jitter measurement data set
- <u>Part II:</u> Time-series analysis of the event-laden delay measurement data set
- <u>Part III:</u> "Parts versus Whole" time-series analysis of the two data sets

Preliminary Data Examination



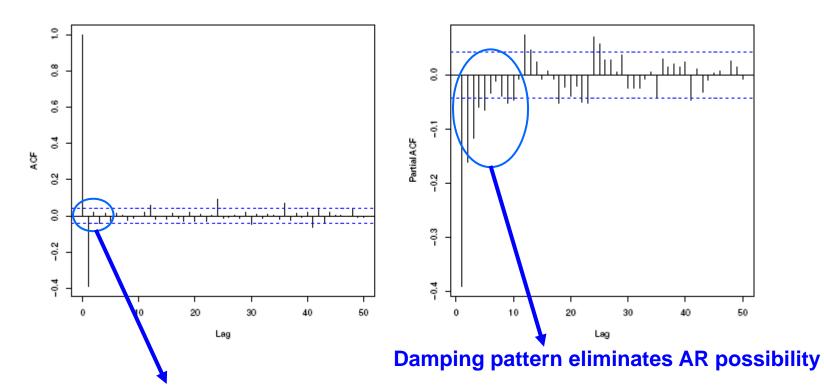
- Four distinct plateaus due to network route changes
- Frequent spikes and dips within each plateau without any specific patterns

ACF and PACF



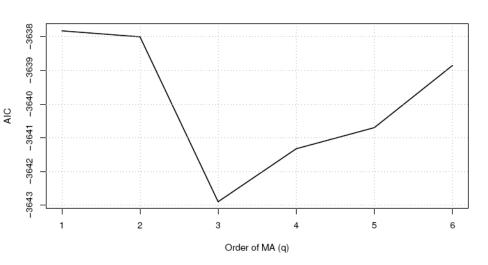
- ACF does not indicate MA
 - No clear cut-off at any lag; ACF is not decaying exponentially
- PACF indicates possibility of AR
 - PACF is decaying exponentially
- Inherent trend in data present that is not visually noticeable

ACF and PACF after 1-Lag Differencing



Indication of MA(1) or MA(2) with sharp cut-off after lag 2

Model Fitting

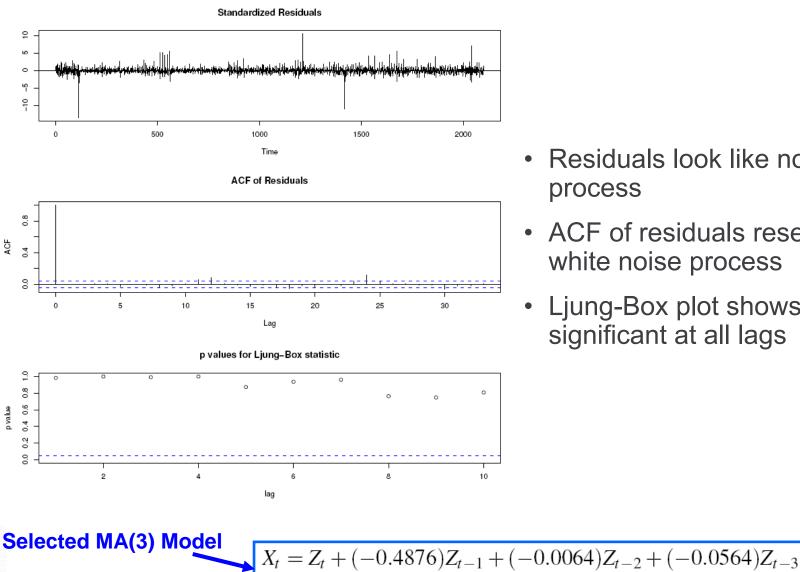


• To verify, we calculate AIC for increasing MA order and clearly see MA(3) has minimum AIC

Parameter	Value	95% Conf. Interval
θ_1	-0.4876	(-0.5303, -0.4449)
θ_2	-0.0064	(-0.0552, +0.0424)
θ_3	-0.0564	(-0.0983, -0.0145)

- To further verify, we compare statistical significance of MA(3) parameter values i.e., θ_1 , θ_2 and θ_3
- We inspect whether 95% CI values $(\theta_x \pm 1.96 \times \sigma_{\theta_x})$ contain zero
 - 95% CI values of θ_3 are significant because they do not contain zero
 - Thus, we cannot reject the null hypothesis that MA(3) is not the suitable model

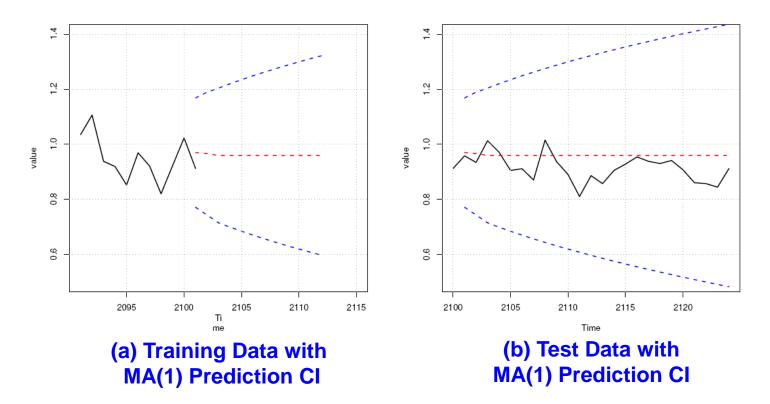
Diagnostic Checking of Fitted Model



- Residuals look like noise process
- ACF of residuals resembles a white noise process
- Ljung-Box plot shows model is significant at all lags

where $Z_i \sim$ White Noise(0,0.01028) and $X_i = \text{diff}(delay_i)$

Prediction Based on MA(3) Model Fitting



- Model prediction matches reality
 - All the test data fall within the MA(3) Prediction CI

Results Discussion

- <u>Part I:</u> Time-series analysis of the routine jitter measurement data set
- <u>Part II:</u> Time-series analysis of the event-laden delay measurement data set
- <u>Part III:</u> "Parts versus Whole" time-series analysis of the two data sets

"Parts Versus Whole" Time-series Analysis

- Routine jitter measurement data set
 - Split into two parts and ran Box-Jenkins analysis on each part
 - Both parts exhibited MA(1) process
- Event-laden delay measurement data set
 - Split into four parts, separated by the plateaus viz., d1, d2, d3, d4 and ran Box-Jenkins analysis on each part
 - *d1* and *d3* exhibited MA(1) process; *d2* and *d4* exhibited AR(12) process

Topics of Discussion

- Background
- Measurement Data Sets
- Time Series Analysis Methodology
- Results Discussion

Conclusion and Future Work

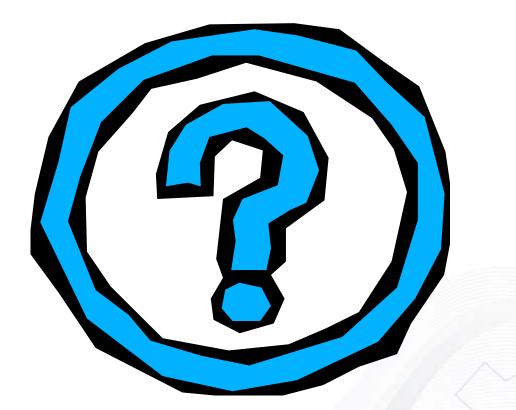
Conclusion

- We presented a systematic time-series modeling of multiresolution active network measurements
 - Analyzed Routine and Event-laden data sets
- Although limited data sets were used, we found
 - Variability in end-to-end network path performance can be modeled using ARIMA (0, 1, q) models, with low q values
 - End-to-end network path performance has "too much memory" and auto-regressive values that are dependent on present and past values may not be pertinent
 - 1-Lag differencing can remove visually non-apparent trends (jitter data set) and plateau trends (delay data set)
 - Parts resemble the whole in absence of plateau network events
 - Plateau network events cause underlying process changes

Future Work

- Apply similar methodology to:
 - Other ActiveMon data sets
 - Other group data sets (e.g., Internet2 perfSonar, SLAC IEPM-BW)
- Lower anomaly detection false-alarms in the plateau detector implementation in ActiveMon
 - Balance trade-offs in desired sensitivity, trigger duration, summary window dynamically based on the measured time-series

Thank you!



Empower. Partner. Lead.

