
Initial Performance Evaluation of the NetEffect 10 Gigabit iWARP Adapter

To appear in Proceedings of IEEE Cluster 2006, RAIT Workshop, Barcelona, Spain, September 2006.

Dennis Dalessandro
Ohio Supercomputer Center

1 South Limestone St., Suite 310
Springfield, OH 45502

dennis@osc.edu

Pete Wyckoff
Ohio Supercomputer Center

1224 Kinnear Road
Columbus, OH 43212

pw@osc.edu

Gary Montry
NetEffect Inc.

9211 Waterford Centre Blvd., Suite 100
Austin, TX 78758

gmontry@NetEffect.com

Abstract

Interconnect speeds currently surpass the abilities of to-
day’s processors to satisfy their demands. The throughput
rate provided by the network simply generates too much
protocol work for the processor to keep up with. Remote
Direct Memory Access has long been studied as a way
to alleviate the strain from the processors. The problem
is that until recently RDMA interconnects were limited to
proprietary or specialty interconnects that are incompati-
ble with existing networking hardware. iWARP, or RDMA
over TCP/IP, changes this situation. iWARP brings all of
the advantages of RDMA, but is compatible with existing
network infrastructure, namely TCP/IP over Ethernet. The
drawback to iWARP up to now has been the lack of avail-
ability of hardware capable of meeting the performance of
specialty RDMA interconnects. Recently, however, 10 Giga-
bit iWARP adapters are beginning to appear on the market.
This paper demonstrates the performance of one such 10
Gigabit iWARP implementation and compares it to a popu-
lar specialty RDMA interconnect, InfiniBand.

Keywords: RDMA, iWARP, InfiniBand, network perfor-
mance

1 Introduction
In the past, the speed of the network has been the major

performance bottleneck. With the advent of new network-
ing technologies, and the push toward 10 gigabits per sec-
ond, the bottleneck is no longer the network. The CPU itself
is the reason for limited performance. To process network
requests for the de facto networking standard, TCP/IP, the
processor must dedicate a large number of cycles and re-
sources to facilitate data transfers. This problem is magni-
fied as the capability of the network expands. While capable
of handing network traffic at 1 Gb/s, it is very difficult for
a processor to keep up with 10 Gb/s of network processing.

At such high data rates, even if the CPU can handle the net-
work processing, the overhead induced by the network lim-
its the availability of the CPU to do other work. This need to
dedicate the processor to networking constrains typical de-
signs that overlap communication and computation, such as
in message passing parallel programs and multi-client web
servers.

Over the past few years there have been a number of ap-
proaches to reduce the demands of high-speed networks on
the host processor. One such approach is the TCP Offload
Engine, or TOE. A TOE simply offloads all network pro-
cessing to the network adapter, from TCP on down to the
bottom of the stack. This is naturally a large help, as it al-
leviates much of the strain on the processor. Yet the CPU
is still responsible for making copies of data and passing it
through the operating system boundary, due to the design of
the programming interface of such devices, the sockets API.
This design thus still has a severe bottleneck, and represents
only half of the solution.

A better approach is to offload not only the network pro-
cessing, but also to provide facilities for user applications
to place data directly into the network adapter’s buffers,
and vice versa. This “zero-copy” mechanism is an integral
part of what is known as Remote Direct Memory Access,
or RDMA, along with “OS bypass”, indicating that the op-
erating system is not involved in the critical path of packet
processing. RDMA has long been shown to be an effec-
tive solution for high performance interconnects [1, 2, 3, 4].
In fact RDMA is the basis for interconnects such as Infini-
Band, Quadrics, and Myrinet [5, 6, 7].

The problem in the past has been the specialized nature
of RDMA. The specialty interconnects mentioned previ-
ously are built on hardware that is incompatible with the de
facto networking protocol today, TCP/IP. This means that
these interconnects can not be used in existing networks,
including the Internet, without costly protocol conversion
or encapsulation. It also means that to utilize these hard-

ware components an entirely new network infrastructure
must be adopted. This is the reason that it is highly unlikely
that these RDMA interconnects will ever see usage beyond
high-end computational clusters. The good news is, a re-
cent set of specifications [8, 9, 10] from the IETF has paved
the way for RDMA to work over TCP/IP. These specifi-
cations, collectively known as iWARP, enable a standards-
based alternative to specialty interconnects such as Infini-
Band, while remaining compatible with existing network-
ing protocols and equipment.

This work examines iWARP and demonstrates the per-
formance capabilities of the NetEffect iWARP adapter. We
begin by describing iWARP in Section 2, then in Section 3
we explore the background of iWARP in hardware and pro-
vide information on the hardware used in this work. We
finish that Section with a look at what the future holds for
iWARP in Section 3.2. The experimental set up and results
are presented in Section 4, along with details on perfor-
mance considerations in Section 4.1. Finally in Section 5,
we explore potential future work, and conclude the paper in
Section 6.

2 iWARP Overview
iWARP may, or may not stand for anything, depending

on who is asked. It is a convenient name to refer to the set
of four main components needed to implement RDMA on
TCP/IP.

At the very top of the iWARP stack is the verbs or API
layer. There exists a specification [11] from the RDMA
Consortium [12] that can be used as a guide to create an
API. As is typical in recent networking protocols, there is
no exact programming interface, but rather guidelines on
the major elements and actions involved in communicat-
ing. Ammasso and NetEffect, the first companies to bring
an iWARP adapter to market, have created their own APIs
based on this verbs specification. However, there are nu-
merous choices for other APIs to interact with an iWARP
device, such as DAPL. With the recent inclusion of iWARP
into the OpenFabrics project, formerly known as OpenIB,
direct support for iWARP devices is available in the Linux
kernel, and a common API for both InfiniBand and iWARP
devices is made possible. This path for future API standard-
ization seems to be the most promising.

The other three components of the iWARP protocol con-
nect the programming interface to a reliable transport proto-
col. iWARP relies on an underlying transport, and specifica-
tions for using two have been written. Both TCP and SCTP
offer the transport functionality needed by iWARP, although
with different adaptation requirements as discussed below.
Reusing an existing transport layer is one of the major ad-
vantages of iWARP, as it permits direct use of the iWARP
protocol over the overwhelming majority of existing net-
works.

The RDMA Protocol layer (RDMAP) [8], sits below
the verbs layer. It is responsible for coordinating RDMA
data transactions and supplies primitives for remote put and
get operations. In order to place data into user applica-
tion buffers without the need to make a copy of the data,
RDMAP relies on the next layer. The Direct Data Place-
ment layer (DDP) [9] moves data between the application’s
memory space and the iWARP device, without passing the
data through the kernel, or making a copy of the data. It uses
steering tags provided by the application to refer to memory
segments on the remote machine. DDP relies on a reliable,
though not necessarily in-order, transport layer that delivers
messages intact without requiring reassembly. While SCTP
offers this functionality directly, TCP/IP is a byte-streaming
protocol that does not have a concept of message bound-
aries. For DDP to be able to reconstruct the segments, it
uses the Marker PDU Aligned (MPA) framing layer [10].
This layer inserts small tags in the data stream at every 512-
byte boundary, allowing a receiving DDP layer to discover
message boundaries and hence place data directly into user
buffers.

With all of these new protocol layers and additions to the
network processing stack, it may seem that iWARP would
end up being slower and more resource intensive, but all
aspects of the iWARP protocol are handled on-board an
RDMA Network Interface Controller (RNIC), and not by
the host operating system, resulting in very fast processing.
In addition to the processing of the RDMA protocol stack,
the TCP/IP processing must also be offloaded to the RNIC
as well, just as in a TOE.

3 iWARP in Hardware
The first iWARP product to appear on the commodity

market was the Ammasso 1100 RNIC, a 1 Gigabit adapter.
The Ammasso RNIC was a giant step forward for iWARP,
and led to a number of research works [13, 14, 15, 16], in-
cluding outfitting a cluster with 41 iWARP nodes at OSC’s
Springfield facility. This unique iWARP platform enables
researchers to experiment with iWARP at moderate scale.
Unable to compete with the likes of InfiniBand, due to being
only a Gigabit adapter, Ammasso has since ceased opera-
tions, although development of software to support the Am-
masso RNIC adapter continues in the OpenFabrics project.

Next to arrive on the scene is the NetEffect 10 Gigabit
iWARP adapter [17]. With this RNIC, iWARP is now able
to compete with InfiniBand on equal footing. The perfor-
mance of these devices is the subject of this paper.

3.1 NetEffect RNIC Description

NetEffects first product is a single-port 10 Gigabit Eth-
ernet channel adapter with a PCI-X 64/133 interface im-
plemented in a structured ASIC with either CX-4 (cop-
per) or SR (fiber) board connectivity. The NetEffect ASIC

integrates NIC, TOE and iWARP logic entirely in hard-
ware. This enables the NetEffect adapter to support RDMA
communication and OS by-pass through the TCP/IP-based
iWARP standards. The ASIC is deeply pipelined with inde-
pendent transmit and receive engines mainly implemented
in hardware state machines. This approach provides maxi-
mum simultaneous bandwidth in both directions with rela-
tively low power and clock rate logic. The memory-based
switch inside the chip implies that packet data motion is
kept to a minimum during processing to optimize packet
throughput. Separation of header and payload on packet
ingress allows the engine to always have the connection in-
formation available in cache. These hardware features al-
low the NetEffect adapter to attain very impressive packet
throughput rates for Ethernet protocols.

3.2 Future of iWARP

As the following sections will show, iWARP is clearly a
viable interconnect, although at present the cost of iWARP
adapters and 10 Gigabit Ethernet switches prohibits its use
in many scenarios. Yet despite the high initial cost of
iWARP, particularly the switch cost, it is important to recall
the oft-demonstrated nature of Ethernet technology costs to
decrease rapidly over a short time period after introduction.

One area that iWARP certainly has an advantage in is
wide-area networking. Since WANs are built on TCP/IP
infrastructure, iWARP is designed directly to work in the
WAN. Early adopters of iWARP for use in the WAN will
likely be enterprise-level servers where the performance
benefits of iWARP warrant the high cost, such as in web
servers or database engines. Previous work with clients us-
ing software to communicate with hardware iWARP [16,
15, 18] has shown it is possible for clients to emulate
iWARP in software. This enables a server equipped with
an iWARP adapter to still take advantage of the RNIC, even
if the client side is not so equipped. By using a software im-
plementation on the clients, the server is able to reduce its
processing load per connection and can thus handle many
more clients. Freely available software exists [19], easing
the widespread adoption of iWARP technology in incre-
mental steps.

4 Experimental Results
This section explains the experiments conducted, and the

results obtained, to gain initial insight into the performance
of the NetEffect 10 Gigabit iWARP adapter. We have cho-
sen InfiniBand to compare iWARP with as InfiniBand is
one of the most popular commodity cluster interconnects,
and hardware was easily obtained. The test environment
consists of two severs running Fedora Core 4 Linux. The
hardware specifications of both servers are the same, using
a Supermicro H8DC8 motherboard with dual Opteron 246
processors and 3 gigabytes of RAM. The NetEffect RNIC

Figure 1. Hardware configuration

is a PCI-X card running at 133MHz, and the InfiniBand is
a Mellanox 4X memfree HCA (MHES14), in an x8 PCI ex-
press slot.

4.1 Performance Considerations

There are a few hardware issues to be kept in mind when
considering the following experiments. The iWARP cards
are connected back to back via a CX4 (copper) cable, while
the InfiniBand cards are connected through an InfiniBand
switch via a CX4 cable. We use a 24-port OEM switch
based on InfiniScale III silicon. InfiniBand switches add
very little overhead, less than 200 nanoseconds usually.
While an Ethernet switch was not available at the time of
this study, there are at least two on the market that feature
cut-through operation and similar per-packet latencies. We
plan to rerun the tests with one switch shortly after the paper
deadline.

Figure 1 shows the internal system configuration. The
InfiniBand cards are connected to the host bus via a PCI-
Express x8 interface that allows 16 Gb/s of data transfer
in each direction. The NetEffect card, however, is con-
nected via a PCI-X 133 MHz interface that limits transfers
to 8.5 Gb/s and only in one direction at a time. We also ex-
pect the latency of bus transfers on PCI-X to exceed their
counterparts on PCI-Express by a few hundred nanosec-
onds.

Another difference between the two devices is the wire
speed. While InfiniBand 4x is marketed as a 10 Gigabit de-
vice, the user payload present on the network is only 8 Gb/s
due to the use of 8b/10b encoding. 10 Gigabit ethernet,
however, delivers 10 Gb/s of user payload while the signal-
ing speed on the network is 12.5 Gb/s. (Both networks do
impose a small and similar amount of packet overhead in
the user payload.)

Software versions used for the tests are: NetEffect Alpha
2 device library, Mellanox IBGD-1.8.2 device library. The
MPI libraries are mpich2 version 1.0.3 with a device written
by NetEffect for their RNIC, and mvapich-0.9.5-mlx1.0.3
for InfiniBand.

4.2 Benchmark Software

The software use to gather the data presented in sec-
tions 4.3 and 4.4 is part of a package known as iWarpPerf.
iWarpPerf is freely available [20], and includes native sup-
port for the NetEffect RNIC, as well as the Ammasso RNIC,
and even includes MPI support. Since there is an MPI ver-
sion we can conduct the same tests on InfiniBand as well.
The two main tests that this software conducts are a band-
width and latency test.

The bandwidth test entails sending a configurable num-
ber of messages (window size) via RDMA write, of a partic-
ular size. Once these have completed, the recipient replies
with a small (1 byte) reply. Based on the amount of data
sent and the time it took, we calculate the bandwidth. This
is a better representation of bandwidth than calculating the
inverse from latency. For the native iWARP versions we
post window size number of RDMA write calls and poll
on the last byte of the buffer. In the MPI version we use
MPI ISend (and receives) to accomplish the same thing, and
rather than polling on the buffer we use MPI’s built in ca-
pabilities (MPI Waitall). As in the native version, a small
1 byte reply is sent, this time with regular MPI Send and
receive.

Latency, as we define it, is half of the round-trip time to
send a message and get a response of equal size. We im-
plement a ping-pong type benchmark using RDMA writes
for the native versions, and again polling on the last byte of
the buffer. As for the MPI version, we use MPI Send and
receive to coordinate which works well for the latency test.

In order to gage CPU utilization in Section 4.5 we
use a tool known as COMB [21], commonly referred to
as busymove. This tool generates a known quantity of
work and conducts concurrent network transfers. Based on
the amount of work done, COMB is able to calculate the
amount of CPU available for processes other than network
communication related. Since COMB is implemented in
MPI it can be used for both iWARP and InfiniBand tests.

The last piece of software used in the experiments is
iWarpMemReg [20]. This test, despite the name is also
available for InfiniBand. iWarpMemReg conducts a number
of memory registration tests and computes an average and
standard deviation. There are a number of modes, which are
designed to test registration and deregistration only, as well
as the combination of registration and deregistration. This
software is written in native NetEffect verbs API, as well as
the native InfiniBand API, commonly known as VAPI.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

4 MB1 MB256 KB64 KB16 KB4 KB1 KB

T
hr

ou
gh

pu
t (

M
b/

s)

Message Size (bytes)

NetEffect Verbs
NetEffect MPI
Infiniband MPI

Figure 2. Bandwidth Comparisons

 0

 20

 40

 60

 80

 100

4 MB1 MB100 KB10 KB1 KB100 B10 B

%
 O

ve
rh

ea
d

Message Size (bytes)

MPI overhead

Figure 3. MPI Overhead

4.3 Bandwidth

One of the most basic performance metrics is the
throughput or bandwidth. For many, this is the number they
look for first when gauging the performance of an intercon-
nect. We present the bandwidth of iWARP and InfiniBand
below.

Looking at Figure 2 we see that the bandwidth for the
code written in the NetEffect verbs API is pretty compa-
rable to the bandwidth for InfiniBand. Infact bandwidth
is basically the same up to 16KB messages. We show
only messages of 1KB and larger. The rationale for this
is at smaller message sizes, latency is the dominant factor,
not how much data can be pushed through. Even though
iWARP in this case is 10 gigabit, due to PCI-X bus limita-
tions, mentioned previously, it is not possible to attain this.
Since the InfiniBand device is plugged into a bus which has
more bandwdith than the device can supply, the InfiniBand
device is able to reach full bandwidth. The interesting fact
is that even on a slower, more limited bus, comparable per-
formance can be realized with iWARP.

The NetEffect verbs code is a bit better performing than
the iWARP MPI, which makes perfect sense, since MPI is

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 200 400 600 800 1000

La
te

nc
y

(u
s)

Message Size (bytes)

NetEffect Verbs
NetEffect MPI
Infiniband MPI

Figure 4. Latency Comparisons

yet another layer on top of the verbs API. We show the over-
head associated with MPI in Figure 3. In previous work
with gigabit iWARP [13], we found the overhead for MPI
to be relatively the same, around 10%. We also found that
TCP at 1 Gigabit had an MPI overhead that was consider-
ably higher, around 20%. One can infer similar overheads
for 10 Gigabit TCP.

4.4 Latency

The other common benchmark that many are interested
in is latency. As Figure 4 shows, InfiniBand has quite an
advantage where latency is concerned, at least for small
messages. Based on the data in the previous section, we
know that when it comes to larger message sizes, iWARP
will eventually perform about as good as InfiniBand. If
iWARP were compared in a siliar bus it is possbile iWARP
could even outperform InfiniBand. This larger latency may
be less attractive for clustering, but has little impact when
running in the WAN over large distances. This small, on
the order of microsecond, latency gets washed out by the
many-millisecond delays encountered in the WAN.

4.5 CPU Utilization

Since one of the main benefits that RDMA brings is re-
duced strain on the server, we should now turn our atten-
tion to the CPU utilization. It has been shown in our previ-
ous work [13] that the bandwidth of TCP decreases linearly
as the amount of CPU used for other work increases. In
agreement with what we found in that previous work, in
Figure 5 we see that iWARP only needs around 80% of the
CPU in order to maintain full bandwidth. Here we show
the amount of CPU required to attain a certain bandwidth,
and we see that once iWARP has 20% of the available CPU
time, iWARP is able to maintain excellent bandwidth rates.
Even with only 10% of the processor iWARP is still able
to maintain 400 MB/s. These observations apply to large
messages, of 256 kB. When we consider small messages,
we end up with a fairly linear progression, which is to be

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

M
B

/s
)

Percent of CPU needed for network processing

iWARP 256KB Message
Infiniband 256KB Message

iWARP 4KB Message
Infiniband 4KB Message

Figure 5. CPU Usage

expected as the adapter handles most of the work for large
messages. At the smaller message end, both iWARP and
InfiniBand require at least some CPU time for posting de-
scriptors, clearing completion events, registering memory,
and other operations.

COMB, the software used for this experiment, involves
sending data in a bi-directional manner, explaining why
the InfiniBand throughput exceeds the theoretical unidirec-
tional maximum. The reason that we see no bi-directional
benefit for iWARP here is due to the PCI-X bus limita-
tion mentioned earlier. Why the InfiniBand bi-directional
throughput has a slight downward slope as CPU time de-
creases is not yet know, and we plan to explore this in more
detail.

4.6 Memory Registration

Lastly we should pay attention to another important per-
formance consideration, and that is the cost of registering
memory. Every application must register memory, and the
costs associated with this are very important in the design
and implementation of software. Looking at Figure 6, we
see that iWARP imposes less overhead for registering mem-
ory than does InfiniBand. The InfiniBand line shows the fa-
miliar stair-step shape seen in previous work [13, 22]. The
reason for the jumps in the graph is the need for extra bus
messages needed to send the growing physical buffer list
down to the network adapter. The iWARP trace shows the
same jumps although they are not as pronounced at the res-
olution in the figure.

We also see that memory deregistration is nearly con-
stant and unaffected by the size of the region. This is also
not surprising as previous work has shown similar results.
Again, there is less overhead for the iWARP device.

5 Future Work
This work represents the first evaluation of an actual 10

Gigabit iWARP device and lays the ground work for con-
tinued usage of iWARP. We are planning to pursue an eval-

 0

 100

 200

 300

 400

 500

 600

1 MB800 KB600 KB400 KB200 KB4 B

T
im

e
(u

s)

Message Size (bytes)

IB Registration
iWARP Registration

IB Deregistration
iWARP Deregregistration

Figure 6. Memory registration

uation of iWARP as a clustering interconnect, as well as a
number of other research projects. Plans are in progress to
place 10 Gigabit iWARP hardware at both of OSC’s centers
and connect over a high speed (10 Gigabit) WAN. We are
also interested in interoperability, both with other iWARP
hardware and software iWARP.

One particular aspect of the NetEffect iWARP adapter
that we plan to investigate in the near future is the ability
of iWARP to perform exceptionally well with multiple con-
nections. Early tests show iWARP to have a significant ad-
vantage over InfiniBand in this respect. The capability for
iWARP to handle many connections is quite important for
the role iWARP is likely to play both in clustering architec-
tures and in high-end servers with thousands of connections.

In directly related work, we plan to pursue evalautions of
the NetEffect adapter against other iWARP adapters as they
become available. We are also interested in looking at the
performance benefit gained by iWARP over a TCP Offload
Engine (TOE), as well as more detailed comparisons with
InfiniBand.

6 Conclusion
In this paper we have shown the basic performance of

10 Gigabit iWARP and that it is a worthy alternative to In-
finiBand. While InfiniBand may start with lower latency,
iWARP wins the battle of bandwidth for larger data sizes.
Given the low CPU demands of iWARP it is hopeful that
iWARP will relieve the problem of Ethernet scaling beyond
1 Gb/s.

References
[1] Dennis Dalessandro and Pete Wyckoff. Fast Scalable

File Distribution Over InfiniBand. In Proceedings of
the 19th IEEE International Parallel and Distributed
Processing Symposium, Workshop on System

Management Tools for Large Scale Parallel Systems,
Denver, CO, April 2005.

[2] P. Buonadonna, A. Geweke, and D. Culler. An
implementation and analysis of the Virtual Interface
Architecture. In Proceedings of SC’98, San Jose, CA,
November 1998.

[3] C. Csanady and P. Wyckoff. Bobnet:
High-performance message passing for commodity
networking components. In Proceedings of PDCN,
December 1998.

[4] J. Liu, B. Chandrasekaran, W. Yu, J. Wu,
D. Buntinas, S. Kini, D. K. Panda, and P. Wyckoff.
Microbenchmark performance comparison of
high-speed cluster interconnects. IEEE Micro,
24(1):42–51, January/February 2004.

[5] Quadrics. Quadrics corporate website.
http://doc.quadrics.com.

[6] Myricom. Myrinet home page.
http://www.myri.com/.

[7] InfiniBand Trade Association. InfiniBand
Architecture Specification, October 2004.

[8] R. Recio, P. Culley, D. Garcia, J. Hilland, and
B. Metzler. An RDMA protocol specification.
http://www.ietf.org/internet-drafts/draft-ietf-rddp-
rdmap-04.txt, April
2005.

[9] Hemal Shah, James Pinkerton, Renato Recio, and
Paul Culley. Direct data placement over reliable
transports. http://www.ietf.org/internet-drafts/draft-
ietf-rddp-ddp-04.txt, February
2005.

[10] P. Culley, U. Elzur, R. Recio, S. Bailey, and J. Carrier.
Marker PDU aligned framing for TCP specification.
http://www.ietf.org/internet-drafts/draft-ietf-rddp-
mpa-02.txt, February
2004.

[11] Jeff Hilland, Paul Culley, Jim Pinkerton, and Renato
Recio. RDMA Protocol Verbs Specification.
http://www.rdmaconsortium.org/home/draft-hilland-
iwarp-verbs-v1.0-RDMAC.pdf, April
2003.

[12] RDMA Consortium. Architectural specifications for
RDMA over TCP/IP.
http://www.rdmaconsortium.org/.

[13] Dennis Dalessandro, Pete Wyckoff. A Performance
Analysis of the Ammasso RDMA Enabled Ethernet
Adapter and its iWARP API. In Proceedings of the
IEEE Cluster 2005 Conference, RAIT Workshop,
Boston, MA, September 2005.

[14] Dennis Dalessandro. RDMA Over TCP/IP: The Next

Step in Ethernet Technology. In Proceedings of the
2005 Commodity Cluster Symposium: On the Use of
Commodity Clusters for Large-Scale Scientific
Applications, Greenbelt, MD, July 2005.

[15] Dennis Dalessandro, Pete Wyckoff, Ananth
Devulapalli. iWarp Protocol Kernel Space Software
Implementation. In Proceedings of the 20th IEEE
International Parallel and Distributed Processing
Symposium (IPDPS ’06), Communication
Architectures for Clusters Workshop, Rhodes, Greece,
April 2006.

[16] Dennis Dalessandro, Pete Wyckoff, Ananth
Devulapalli. Design and Implementation of the iWarp
Protocol in Software. In Proceedings of the 17th
IASTED International Conference on Parallel and
Distributed Computing and Systems, Phoenix, AZ,
November 2005.

[17] NetEffect Inc. Neteffect corporate website.
http://www.neteffect.com, 2006.

[18] P. Balaji, H.-W. Jin, K. Vaidyanathan, and D. K.
Panda. Supporting iWARP compatibility and features
for regular network adapters. In Proceedings of the
IEEE Cluster 2005 Conference, RAIT workshop,
Boston, MA, September 2005.

[19] Dennis Dalessandro and Ananth Devulapalli and Pete
Wyckoff. Software iWarp user and kernel software
distribution. http://www.osc.edu/research/
network file/projects/iwarp/index.shtml,
2005.

[20] Dennis Dalessandro. iWarp resources.
http://www.osc.edu/˜dennis/iwarp/index.html, 2005.

[21] W. Lawry, C. Wilson, A. Maccabe, and R. Brightwell.
COMB: A portable benchmark suite for assessing
MPI overlap. In Proceedings of the IEEE Cluster
2000 Conference, September 2000.

[22] Pete Wyckoff and Jiesheng Wu. Memory registration
caching correctness. In Proceedings of CCGrid’05,
Cardiff, UK, May 2005.

