Accélerating Web Protocols Using
RDMA

Dennis Dalessandro
Ohio Supercomputer Center

NCA 2007




Who's Responsible for this?

= Dennis Dalessandro
* Ohio Supercomputer Center - Springfield
= dennis@osc.edu

" Pete Wyckoff

* Ohio Supercomputer Center - Columbus
= pw@osc.edu



Note:

A Our topic today is Web Servers but applicable to
many client-server application domains.



Problem:

* |[ncrease in demand for bandwidth
* Increase in demand for dynamic content
* |[ncrease in number of clients

* How we interact with the web is becoming more
and more complex, not simplifying

" Greater reliance on web based applications



Solutions:

= Distributed servers
* High cost, complicated to maintain

* Get a more powerful server
* Moore's Law coming to an end?
* Demand means more upgrades more often

= Reduce avalilability
* Not very likely!

= Offload network processing
* Substantially less expensive
= Works in HPC!



Network Processing Load

" Takes CPU power to generate content

= Takes CPU power to handle network processing
= Multiple copies of data needed to get onto wire

" If CPU busy doing network processing it can not
generate or retrieve content

" The opposite is true as well
* Naturally problem gets worse with more clients



Protocol Offload

* NIC handles network related processing
* Removes biggest burden from the CPU

= Two common cases:

= TCP Offload Engine (TOE)
= CPU still has to move data to/from NIC
* Leads to memory bottleneck at CPU
= Partial solution
* Remote Direct Memory Access (RDMA)
* NIC is able to DMA data to/from memory
= CPU not involved at all
* Long used in HPC (InfiniBand, Myrinet, etc)



@Iormal (TCP) Network Processing

Application Buffer

rr.i ny

Z

Disk

NIC

CPU Does Network Processing and Moves Data



TOE Network Processing

Application Buffer

>

Disk

O

I NIC
Interface
NIC Does Network Processing CPU Moves Data



RDMA Network Processing

Application Buffer

NIC

NIC Does Processing And Moves Data




How can this work for Web Servers?

“ IWARP is RDMA over ordinary TCP/IP

* Only server needs upgrade

* Clients can communicate with software iWARP
" via browser plugin or application mods
= Makes for easy integration/adoption

* IWARP card much cheaper than new server

* Changes to HTTP?
= HTTP is simply application data
= Only change needed is extending headers
= Fully backwards compatible



HTTP Header:

GET /index.htm| HTTP/1.1
Host: www.osc.edu
User-Agent: Mozilla/5.0
Connection: Keep-Alive




HTTP Header:

GET /index.htmI| HTTP/1.1

Host: www.osc.edu

User-Agent: Mozilla/5.0

Connection: Keep-Alive

RDMA: server-writes, ip=10.0.0.15, port=3242,
stag=642, to=0, maxlen=1048576




Get Request:

Server Writes Client Reads

client server client server

RDMA read >

RDM 4 aok




POST Request

= Similar to GET but:
= Client Writes
= Server Reads

" Not yet implemented
= Planned for future work



RDMA Connection Issue

= Server establishes RDMA connection to client
= Costly, especially in high latency environments
= Ordinary TCP connection

* Why?
* Need to transition ordinary TCP connection to iWARP
* Not facilitated by todays software
= RDMA connection represented by QP

= TCP connection represented by FD
* QP '= FD (currently)



Memory Registration

= Two Methods
= Static
* Dynamic

* Necessary for RDMA
* Ensure data stays put!

= Costly, proportionate to size

= Two phases:
* Pin physical pages
* Involves walking page tables

* Inform adapter of physical address
= Costly virt->phys translation



Static Registration

“ Register large chunk outside of critical path

* In Apache: per client at connection time
= Multiple transfers can reuse buffer
* Not realistic as number of clients scales

= Still have cost to get file to user buffer
* Results in the need for a memcpy()



Dynamic Registration

= Register buffer for each request
= Very costly, proportionate to size

= Adds cost of deregistration
= Constant cost, not a big deal

= Eliminates the memory copy
* The realistic approach, scales as clients



Lessons Learned

* Low CPU Utilization
* Dynamic is best
= Registration faster than memcpy()

* High CPU Utilization
= Static is best
* memcpy() faster than registration

= Reason: Registration is extremely CPU intensive



I'mplementation

* Does not modify Apache code
* Why mess with a good thing?

" Get all the benefits of Apache for free
= Efficient process management
* Dynamic content generation (PHP/CGI)

= Makes use of hook infrastructure
= Resulting module known as mod _rdma



Hooks

« Child Init: " Insert Filter:
= Open and init dev * Make RDMA conn
" Once per proc = Attach OUtpUt filter

. = Each request
* Pre-connection: .

“ Reg term handler " Output Filter:

= Once per TCP conn * Do RDMA op
= Pass on TCP Hdrs



Performance Analysis

= Server outfitted with hardware iIWARP
= NEO10 10 Gigabit IWARP Adapter (NetEffect)
= Connected to Cisco 6506 switch
= Apache with mod rdma

* Clients equipped with 1 Gigabit Tigon3
= Connected to Cisco 6506 switch
= wget with linked in software IWARP
= Only have 15 clients (switch capacity)

"= To simulate heavy load use cpu_eater
" |ots of trig calculations
" some 'nice' magic
" results in nearly 100% CPU usage at all times



Time (s)

Single File Retrieval

1.2

1t

0.8

0.6

04

0.2 r

0

IWARP - Static -
IWARP - Dynamic
TCP
No Load
- I o
2KB 4KB S00KB 1M

Message Size

gM

Time (s)

100 ¢
90 r iWARP - Static s
80 IWARP - Dynamic
20 t TCP mmm
60 |
50 |
40 |
30 |
20 | Full Load
by (N (B

0
KB 4KB 500KB 1M

Message Size

gM



Multiple Clients

04l iWARP —=—

032 r

0.3 r

Time (s)
Time (s)

0.25 r

0.2 r

013

0O 2 4 6 8 10 12 14 186
Number of Clients

No Load

140 |

120

100

80

60 I

40

20

TCP —+—
iWARP —=—

0O 2 4 6 8 10 12 14 16
Number of Clients

Full Load



Performance Improvement OK

" Expected much bigger benefit for iWARP
= So Did We!

* Definite improvement under heavy load
= Definite improvement for large transfers

= Two costs to amortize to see benefits
= Cost of RDMA connection
= Cost of memory registration

= Something more fundamental at work here



Jg\pache Uses Sendfile

Application Buffer

Z

Disk

‘g Zero-Copy way to send data direct from page cache

TCP/IP stack still processed on CPU of course

[



E{ecall RDMA - so much for Z-Copy

Application Buffer

®

Disk

m To get file data into buffer to register adds a copy!
RDMA APIs do not always map to sockets based applications



What about Memory Map?

Application Buffer

Memory
“Map *
Disk

NIC

Removes the copy but adds very costly virt->phys translation




Solution

* RDMA sendfile
* Solves exactly this problem

= Use a kernel module to register memory
* User code asks kernel to send a file
* Kernel registers and pins down page cache
= Avoids costly virtual to physical translation
= Avoids copying data to user space
= Kernel returns STag to user and user sends data
= Kernel and user space can not share QP

= Complicates things programatically but hidden
away with rdma sendfile library



RDMA Sendfile

* Upcoming paper at Hot-Interconnects 07

= Solves problem for sending side only

* Next step is to work on protocol to cooperate
with recv side

= Working on integrating into mod _rdma
= Will really show performance advantage

= Waiting on iIWARP HW rev and source code
access to integrate (NetEffect)



Future Work for mod_rdma

= RDMA Sendfile Integration
= Full SSL support

* Moving experiments to WAN
= OSC Net (10 Gigabit WAN)

* Find suitable production application



Thanks!

“ Any questions?
= For more info contact:

Dennis Dalessandro - Ohio Supercomputer Center
dennis@osc.edu

Software iWARP available on the web:
Ugly URL but link on www.osc.edu/~dennis



