

Accelerating Web Protocols Using Accelerating Web Protocols Using
RDMARDMA

Dennis Dalessandro
Ohio Supercomputer Center

NCA 2007

Who's Responsible for this?

 Dennis Dalessandro
 Ohio Supercomputer Center - Springfield
 dennis@osc.edu

 Pete Wyckoff
 Ohio Supercomputer Center - Columbus
 pw@osc.edu

Note:

Our topic today is Web Servers but applicable to
many client-server application domains.

Problem:

 Increase in demand for bandwidth

 Increase in demand for dynamic content

 Increase in number of clients

 How we interact with the web is becoming more
and more complex, not simplifying

 Greater reliance on web based applications

Solutions:
 Distributed servers

 High cost, complicated to maintain

 Get a more powerful server
 Moore's Law coming to an end?
 Demand means more upgrades more often

 Reduce availability
 Not very likely!

 Offload network processing
 Substantially less expensive
 Works in HPC!

Network Processing Load

 Takes CPU power to generate content

 Takes CPU power to handle network processing
 Multiple copies of data needed to get onto wire

 If CPU busy doing network processing it can not
generate or retrieve content

 The opposite is true as well

 Naturally problem gets worse with more clients

Protocol Offload

 NIC handles network related processing

 Removes biggest burden from the CPU

 Two common cases:
 TCP Offload Engine (TOE)

 CPU still has to move data to/from NIC
 Leads to memory bottleneck at CPU
 Partial solution

 Remote Direct Memory Access (RDMA)
 NIC is able to DMA data to/from memory
 CPU not involved at all
 Long used in HPC (InfiniBand, Myrinet, etc)

Normal (TCP) Network Processing

CPU Does Network Processing and Moves Data

TOE Network Processing

NIC Does Network Processing CPU Moves Data

RDMA Network Processing

NIC Does Processing And Moves Data

How can this work for Web Servers?

 iWARP is RDMA over ordinary TCP/IP

 Only server needs upgrade
 Clients can communicate with software iWARP

 via browser plugin or application mods
 Makes for easy integration/adoption

 iWARP card much cheaper than new server

 Changes to HTTP?
 HTTP is simply application data
 Only change needed is extending headers
 Fully backwards compatible

HTTP Header:

GET /index.html HTTP/1.1
Host: www.osc.edu
User-Agent: Mozilla/5.0
Connection: Keep-Alive

HTTP Header:

GET /index.html HTTP/1.1
Host: www.osc.edu
User-Agent: Mozilla/5.0
Connection: Keep-Alive
RDMA: server-writes, ip=10.0.0.15, port=3242,
 stag=642, to=0, maxlen=1048576

Server Writes Client Reads

Get Request:

POST Request

 Similar to GET but:
 Client Writes
 Server Reads

 Not yet implemented
 Planned for future work

RDMA Connection Issue

 Server establishes RDMA connection to client
 Costly, especially in high latency environments
 Ordinary TCP connection

 Why?
 Need to transition ordinary TCP connection to iWARP
 Not facilitated by todays software

 RDMA connection represented by QP
 TCP connection represented by FD
 QP != FD (currently)

Memory Registration

 Two Methods
 Static
 Dynamic

 Necessary for RDMA
 Ensure data stays put!

 Costly, proportionate to size

 Two phases:
 Pin physical pages

 Involves walking page tables
 Inform adapter of physical address

 Costly virt->phys translation

Static Registration

 Register large chunk outside of critical path

 In Apache: per client at connection time
 Multiple transfers can reuse buffer
 Not realistic as number of clients scales

 Still have cost to get file to user buffer
 Results in the need for a memcpy()

Dynamic Registration

 Register buffer for each request
 Very costly, proportionate to size

 Adds cost of deregistration
 Constant cost, not a big deal

 Eliminates the memory copy

 The realistic approach, scales as clients

Lessons Learned

 Low CPU Utilization
 Dynamic is best
 Registration faster than memcpy()

 High CPU Utilization
 Static is best
 memcpy() faster than registration

 Reason: Registration is extremely CPU intensive

Implementation

 Does not modify Apache code
 Why mess with a good thing?

 Get all the benefits of Apache for free
 Efficient process management
 Dynamic content generation (PHP/CGI)

 Makes use of hook infrastructure

 Resulting module known as mod_rdma

Hooks

 Child Init:
 Open and init dev
 Once per proc

 Pre-connection:
 Reg term handler
 Once per TCP conn

 Insert Filter:
 Make RDMA conn
 Attach output filter
 Each request

 Output Filter:
 Do RDMA op
 Pass on TCP Hdrs

Performance Analysis

 Server outfitted with hardware iWARP
 NE010 10 Gigabit iWARP Adapter (NetEffect)
 Connected to Cisco 6506 switch
 Apache with mod_rdma

 Clients equipped with 1 Gigabit Tigon3
 Connected to Cisco 6506 switch
 wget with linked in software iWARP
 Only have 15 clients (switch capacity)

 To simulate heavy load use cpu_eater
 lots of trig calculations
 some 'nice' magic
 results in nearly 100% CPU usage at all times

Single File Retrieval

No LoadNo Load Full LoadFull Load

Multiple Clients

No LoadNo Load Full LoadFull Load

Performance Improvement OK

 Expected much bigger benefit for iWARP
 So Did We!

 Definite improvement under heavy load

 Definite improvement for large transfers

 Two costs to amortize to see benefits
 Cost of RDMA connection
 Cost of memory registration

 Something more fundamental at work here

Apache Uses Sendfile

Zero-Copy way to send data direct from page cache

TCP/IP stack still processed on CPU of course

Recall RDMA – so much for Z-Copy

To get file data into buffer to register adds a copy!

RDMA APIs do not always map to sockets based applications

What about Memory Map?

Removes the copy but adds very costly virt->phys translation

Solution

 RDMA sendfile
 Solves exactly this problem

 Use a kernel module to register memory
 User code asks kernel to send a file
 Kernel registers and pins down page cache

 Avoids costly virtual to physical translation
 Avoids copying data to user space

 Kernel returns STag to user and user sends data
 Kernel and user space can not share QP
 Complicates things programatically but hidden

away with rdma sendfile library

RDMA Sendfile

 Upcoming paper at Hot-Interconnects 07

 Solves problem for sending side only
 Next step is to work on protocol to cooperate

with recv side

 Working on integrating into mod_rdma
 Will really show performance advantage

 Waiting on iWARP HW rev and source code
access to integrate (NetEffect)

Future Work for mod_rdma

 RDMA Sendfile Integration

 Full SSL support

 Moving experiments to WAN
 OSC Net (10 Gigabit WAN)

 Find suitable production application

Thanks!

 Any questions?

 For more info contact:

Dennis Dalessandro - Ohio Supercomputer Center
dennis@osc.edu

Software iWARP available on the web:
Ugly URL but link on www.osc.edu/~dennis

