
iWarp Protocol Kernel Space Software Implementation

Dennis Dalessandro
Ohio Supercomputer Center

1 South Limestone St., Suite 310
Springfield, OH 45502
dennis@osc.edu

Ananth Devulapalli
Ohio Supercomputer Center

1 South Limestone St., Suite 310
Springfield, OH 45502
ananth@osc.edu

Pete Wyckoff
Ohio Supercomputer Center

1224 Kinnear Road
Columbus, OH 43212

pw@osc.edu

Abstract

Zero-copy, RDMA, and protocol offload are three very
important characteristics of high performance intercon-
nects. Previous networks that made use of these techniques
were built upon proprietary, and often expensive, hardware.
With the introduction of iWarp, it is now possible to achieve
all three over existing low-cost TCP/IP networks.

iWarp is a step in the right direction, but currently re-
quires an expensive RNIC to enable zero-copy, RDMA,
and protocol offload. While the hardware is expensive at
present, given that iWarp is based on a commodity inter-
connect, prices will surely fall. In the meantime only the
most critical of servers will likely make use of iWarp, but in
order to take advantage of the RNIC both sides must be so
equipped.

It is for this reason that we have implemented the iWarp
protocol in software. This allows a server equipped with
an RNIC to exploit its advantages even if the client does
not have an RNIC. While throughput and latency do not
improve by doing this, the server with the RNIC does ex-
perience a dramatic reduction in system load. This means
that the server is much more scalable, and can handle many
more clients than would otherwise be possible with the
usual sockets/TCP/IP protocol stack.

1 Introduction

With the network performance bottleneck moving away
from the NIC and to the CPU, new solutions for network
processing are in need. Well known high performance
interconnects such as InfiniBand [10], Myrinet [14] and
Quadrics [18] have employed a technology known as Re-
mote Direct Memory Access (RDMA) to solve this prob-
lem. Further they address the need for zero-copy and proto-
col offload.

Zero-copy is a mechanism for moving data without intro-

Support for this project was provided by the Department of Energy
ASC program and Sandia National Laboratories.

ducing a copy into and out of operating system buffers. Typ-
ical TCP/IP processing, as implemented in the Linux kernel
for instance, involves multiple copies of user buffers, both
during sending and receiving. Thus the kernel must gener-
ally be bypassed to avoid the expense of copying. Though
there have been attempts to enable zero-copy without OS
bypass, such as [11], these attempts have made certain as-
sumptions that will not always hold true.

The importance of RDMA has been shown in a num-
ber of research projects, such as U-Net [23], Hamlyn [3],
and EMP [21]. These efforts pioneered the use of advanced
techniques, but did not result in widely available commer-
cial products. iWarp is the next likely step in the evolu-
tion of these technologies towards viable products. iWarp
enables RDMA, including zero-copy and protocol offload
over the existing TCP/IP infrastructure. The easiest way of
explaining iWarp is simply “RDMA over Ethernet.” Being
built on top of TCP/IP is iWarp’s biggest advantage. This
means that iWarp will work in the WAN, unlike the other
special purpose interconnects previously mentioned.

Keeping with the commodity, and standards driven na-
ture of TCP/IP, iWarp itself is governed by a set of IETF
RFCs, specifically RDMAP [19], DDP [20], and MPA [4].
An application programming interface (API) is necessary
for user space applications to make use of iWarp hardware,
and in our case the kernel space iWarp software device. A
verbs level API specification [9] is available and used as a
guide by at least one vendor. There is also ongoing work to
integrate iWarp into the OpenIB software stack [16]. Fur-
thermore, the IETF has published a draft addressing iWarp
security concerns [17].

Implementations of iWarp on 10 Gigabit Ethernet will
likely be available from a number of companies in the near
future. The first commercially available iWarp adapter, a
Gigabit product from Ammasso [1] was available for the
first time in mid 2004.

In addition to RDMA, other solutions have been pro-
posed. Specifically TCP Offload Engines, or TOE cards.
TOE cards address the problem by offloading the process-
ing of the TCP/IP protocol stack to the NIC. This is a huge



step up from traditional TCP/IP processing in the kernel,
but only addresses one side of the problem. In a TOE card,
data is generally moved through the kernel, by the CPU as
with non-offloaded Ethernet adapters. The requirement of
copying data to and from user-space buffers adds significant
load on the host processor that is not needed with RDMA.

In the next section we provide the motivation for a soft-
ware based iWarp solution, followed by an in-depth expla-
nation of iWarp. Then in section 4 we provide insight into
the design and implementation challenges we faced during
this work. We follow this with an analysis of experiments
designed to showcase the performance capabilities of our
iWarp protocol software stack, and that it is indeed pos-
sible for a hardware equipped host to experience dramat-
ically lowered system usage when communicating with a
software only host. We finish with a bit about related and
future work, before drawing our final conclusions.

2 Why Software iWarp?

There are a number of reasons for implementing the
iWarp protocol stack in software. The key reason comes
from the observation that if a server is equipped with an
RDMA Enabled NIC, or RNIC, it can only take advantage
of it if the remote host also can speak the iWarp protocol.
Traditionally this meant that both sides must have the hard-
ware RNIC. With our software implementation, we create a
software RNIC device with the same programming interface
as a hardware device. The remote host does not observe a
difference and as such is able to take advantage of the pro-
tocol offload and zero-copy operations provided by its own
RNIC.

This approach shows no performance benefit on the host
that must implement the iWarp protocol in software, in fact
it even adds some additional overhead. It is important to
realize that it is not our goal to provide any direct benefit
to the host with software iWarp. The key advantage from
our work comes from the dramatically reduced load experi-
enced on a hardware iWarp equipped server when the client
is not hardware equipped. If the server is able to take ad-
vantage of its RNIC, it is able to handle many more clients
with the same processing power, or equivalently, service the
same client load but also have spare cycles for other work.
Viewed as an evolution from traditional Gigabit Ethernet
adapter cards, to offloaded 10 Gigabit iWarp adapters, this
approach has a lower deployment cost and focuses spend-
ing where it will provide measurable advantages. Only the
most critical of servers need new adapters, and clients can
use our freely available software.

Other reasons for implementing iWarp in software are
for research into the inner workings of the protocols, and
how to best take advantage of them. Also an open source
implementation of the iWarp protocol allows for testing a

wide variety of applications to verify compliance, where
performance is not necessarily a concern but correctness on
a large number of hosts is. It is possible with a software-
only solution to develop applications in an infrastructure
that does not have the high cost overhead of purchasing
RNICs.

This work builds on our previous software iWarp im-
plementation [5], focusing on research and experimentation
beyond what was previously done, in particular a new ker-
nel space implementation as opposed to the previous user
space implementation. By hosting iWarp in the kernel,
we enable iWarp to be used as a system utility for kernel-
resident clients such as network file systems and remote
block devices. Having a kernel implementation also enables
the possibility of fine tuning the TCP/IP stack for improved
performance down the road. We are also able to eliminate
as many data copies as possible while residing in the ker-
nel. This kind of control over the operating system and ac-
cess to its internal routines is not possible in a user space
implementation.

Figure 1. iWarp/TCP, iWarp/SCTP and sock-
ets/TCP protocol stacks.

3 What is iWarp?

As mentioned in the previous sections, iWarp is com-
prised of three protocol layers built on top of TCP/IP, and a
verbs/API layer that interfaces between client applications
and the underlying protocol stack. A pictorial representa-
tion of the iWarp stack as compared to the traditional sock-
ets over TCP stack is given in Figure 1. As indicated in the
figure, it is also possible for iWarp to run over SCTP. Since
SCTP provides a built in framing mechanism there is no
MPA layer necessary, refer to 3.4 for more details on this.

3.1 Verbs or API

The very top layer of the stack is the verbs, or API layer.
This is the only interface into the iWarp stack that is accessi-
ble to a user application. There is one possible specification
available [9], but more than likely each vendor will produce



their own API. As long as the API conforms to the verbs
specification, then the implementation is compatible in se-
mantics if not in syntax with other iWarp implementations.
Having a verbs specification and a low level API is impor-
tant for supporting higher level languages and programming
paradigms such as MPI [13] and DAPL [8]. Unlike our
iWarp API, the traditional sockets API does not provide the
semantics necessary to implement zero-copy messaging.

3.2 RDMAP

The RDMA Protocol (RDMAP) layer is the portion of
the stack that is responsible for coordinating RDMA data
transfers. The RDMAP layer follows a very specific proto-
col, which is specified in [19]. In general, the initiation of
an RDMA write, or send message is verified by this layer
and passed down to the DDP layer. Messages received by
lower layers are retrieved from the network in sections be-
ginning with the message header. This header is presented
to the RDMAP layer to determine the local destination for
the payload. In the case of an RDMA write message, the
local destination is specified in the message header itself.
RDMAP verifies the incoming message parameters and re-
turns buffer and length information to DDP. Untagged in-
coming messages simply consume the next buffer from a
list of pre-posted receive buffers.

3.3 DDP

DDP, or Direct Data Placement [20], is mainly responsi-
ble for directly placing incoming data into user application
buffers without making a copy. DDP does this by segmenta-
tion. On sends, DDP splits outgoing messages into chunks
that will fit into lower-level transport frames. On the re-
ceiving end, DDP reassembles these frames and places the
data at the appropriate offset in the destination buffer. DDP
places a small header in each outgoing message to specify
the queue number, message number and offset as well as an
opaque field from RDMAP.

3.4 MPA

Since TCP is a byte-oriented streaming protocol, there is
no guarantee that data will arrive in order on the receiver.
This causes problems for DDP, in order to avoid buffering,
and thus creating a copy of the incoming data, the Marker
PDU Aligned Framing layer (MPA), is used [4]. MPA
adds periodic markers to the byte stream to allow the re-
mote side to rediscover the message boundaries. The other
contribution is a stronger CRC-32 checksum to supplement
the known insufficient TCP checksum [22]. As mentioned
previously, when SCTP is the underlying transport layer,
MPA is not needed. This is because SCTP already provides

the necessary framing to rediscover message boundaries, as
well as implements a stronger check sum.

3.5 Hardware Considerations

An important aspect to consider is the role that hardware
plays. In traditional TCP processing, everything above the
Data Link layer is done in software, and the CPU is respon-
sible for moving data to and from the NIC, by going through
the kernel where copies are made. In a TOE card, every-
thing from the TCP layer down is done in hardware. Yet the
CPU still has to move data to the NIC by passing it through
the kernel and making copies along the way. With an iWarp
RNIC the story is quite different. Everything from RDMAP
down should be implemented in hardware. This means that
the RNIC moves data directly into and out of application
buffers, and not the CPU. The kernel is bypassed and no
copies are required. The RNIC provides for much lower
CPU utilization, and requires far less memory bandwidth
than the traditional TCP mechanisms, and to a lesser extent
the TOE card as well. It may seem counterintuitive that we
are creating an iWarp stack to run solely in software, but one
must keep in mind, the benefits outlined in this section will
still be realized by the host which does have the RNIC—we
do not expect to directly benefit the host without an RNIC.
Although the non-accelerated host could possibly see an in-
direct benefit, in that the server with reduced system load
could be able to handle more clients, or handle clients in a
shorter amount of time.

4 Design and Implementation

Although much of the code in this work is similar in
function to our previous user space work [5], there are nu-
merous challenges that arose in implementing the stack in
kernel space. We have tested our stack against the Ammasso
1100 RNIC [1] to ensure compliance with existing hard-
ware. This required us to provide facilities to disable MPA
since the Ammasso RNIC does not implement the specifi-
cation fully. We have also added the option to disable CRC
so that we can understand fully the impact of this CPU in-
tensive operation.

4.1 About the code base

Our source code base for both user level and kernel
iWarp is made up of roughly 20,000 lines of ANSI C code.
It is known to build with GCC version 3. There are no spe-
cial hardware or software requirements beyond, a 2.6 Linux
kernel and GCC. While the user level stack should work on
Linux with a 2.4 or earlier kernel (not tested), the kernel
iWarp stack will only work on a 2.6 kernel, due to the dif-
ferent ways in which modules are handled between the two



versions. It is worth noting, that our kernel module, does
not require any kind of patch to the kernel. It can be loaded
and unloaded at will if the running kernel supports it. Er-
rors from the kernel stack are visible in dmesg. The code
has been tested and verified to work on both 32 and 64 bit
versions of Linux.

4.2 Kernel Implementation

In the kernel, we create a character device to serve as a
software RNIC device. This enables user level interaction
with the kernel-resident iWarp stack through ordinary read
and write calls.

4.3 Verbs API

By using the character device and standard I/O interface
we are able to still have our verbs API reside in user space,
as in our previous work. While the API remains the same
to the end user application, a complete rewrite of the verbs
layer’s internal interface with the iWarp stack was neces-
sary. Care had to be taken so that the verbs API remains
functional with both user and kernel level iWarp stacks.
This means that an application can be run on either ker-
nel or user level iWarp and no change in application code is
needed. Just a recompile to pick up the appropriate libraries.

4.4 TCP Interface

Ideally various aspects of MPA would be integrated into
the TCP stack itself. While this would be quite feasible,
the changes would require modifications to the kernel be-
yond an independent software module and users would need
a special kernel patch to use our module. To avoid this
requirement we restricted our interactions with the kernel
TCP stack to well-known exported interfaces, in particular,
kernel sendmsg and kernel recvmsg. This choice
brings two major implications: first, that the application is
blocked while sending and, second, that message reception
is driven by application polling. Due to the goals of soft-
ware iWarp in reducing CPU utilization on the server or
hardware side of the communication, these restrictions are
in practice not bothersome on the client or software side.

4.5 Threading Model

One way to avoid the two limitations mentioned pre-
viously would be to allocate a separate kernel thread to
manage outgoing sends and to block for incoming mes-
sages while the main application thread continues its work.
This extension is not difficult and may benefit some appli-
cations that attempt to overlap communication and compu-
tation, or multiple workloads on the same machine. There

is a trade off between simplicity of single-threaded model
versus performance and complexity of multi-threaded im-
plementation. For our kernel port we chose the former, as
performance on the software side is not our focus.

4.6 Memory Registration

The application buffers must be pre-registered with the
operating system before they are used for the transmission
or reception of messages. Furthermore, due to segmenta-
tion of the the physical address space as used by the Linux
kernel, pages must be mapped into the kernel address space
using kmap and removed with kunmap before they can be
used by the TCP stack. We use reference counting to map
the pinned pages only when necessary. While pinning lasts
for the duration of a memory registration, kernel mapping
is restricted from the beginning of a message to its com-
pletion. Note that for machines with 64-bit address spaces,
calls to kmap and kunmap are unnecessary and are opti-
mized away because the kernel has enough address bits to
map the entire physical memory at once. In spite of this,
we use the mapping facility to support a broader range of
architectures.

5 Results

We now present the results from experiments undertaken
to explore performance and interoperability of our kernel
software iWarp stack. The three key metrics which we will
concentrate on are latency, bandwidth and CPU utilization,
or system load. While the performance of our software
stack is not our main goal, we must still verify that it does
not cause a drastic drop in performance. The impact of the
software stack must be small or else it will not find use
in any real application. As mentioned throughout this pa-
per, our main focus is on reducing the load on the system
with the hardware iWarp when communicating with non-
hardware equipped hosts.

The experiments are run between combinations of nodes
using three different iWarp stacks: the kernel implemen-
tation presented in this paper, the user-space implementa-
tion we presented earlier, and the Ammasso hardware im-
plementation. Our results demonstrate that all these stacks
do inter-operate, but that performance varies.

5.1 Test Environment

The test environment for this work consists of a 71 node
Linux cluster, of which 41 nodes are outfitted with an Am-
masso 1100 RNIC [1]. Each node has two Opteron 250
processors with 2 GB RAM and an 80 GB SATA disk, al-
though we disabled one processor to obtain more accurate
utilization results. There are two Tigon 3 Gigabit Ethernet



adapters built into the Tyan S2891 motherboard. The Am-
masso RNICs and management networks are connected by
two SMC switches. A switch was measured to contribute
roughly 3.5 µs latency to the flight time of small packets,
up to about 150 bytes, then a constant slope at line rate con-
sistent with store-and-forward operation leading to a 14 µs
delay at full 1500-byte frames.

5.2 Latency

We define latency as half of the total round-trip time of a
ping-pong message sent from one host to another, and back.
All measurements include operations by the user applica-
tion to send outgoing messages, and detect reception of in-
coming ones. We use iWarp RDMA writes in all tests, and
use socket write calls for TCP tests. It is worth keeping
in mind that a software iWarp RDMA write is really a TCP
socket write under the hood.

4 byte messages 64 kB messages
hw-hw 16.1 ± 0.3 614.2 ± 3.3
ksw-hw 18.7 ± 0.2 619.7 ± 1.2
tcp-tcp 16.9 ± 0.2 594.8 ± 18.9

Table 1. Latency overview (µs).

In Table 1 we present the latency measurements for
different node configurations. These numbers were gath-
ered by connecting the respective hosts back to back, via a
crossover cable, so we can discount the delay in latency in-
troduced by the switches. The hw-hw line is two Ammasso
RNICs and we can see a slightly lower latency for 4 byte
messages than for the kernel software to hardware combi-
nation, ksw-hw. The values at the larger message size are
roughly identical given the measurement errors. The sur-
prising result in contrast to our previous work [5] is that the
TCP latency, tcp-tcp is quite low. The difference is that the
Tigon 3 NICs perform better than the Intel eepro1000 NICs
used in that previous work, and that the processors in this
test equipment are somewhat faster.

While our kernel implementation of software iWarp does
add some latency to communication with a hardware de-
vice, it is rather small and at larger message sizes becomes
negligible. It comes from the overhead of message process-
ing in software on one side of the communication.

5.3 Throughput

In the case of throughput, we are measuring the time it
takes to send many one-way messages from the source to
the destination, then the return of a short message from the
destination to the source to tell when all messages are re-
ceived. As with the latency tests we used iWarp RDMA
writes.

Unlike with latency, for throughput we must consider
separately the case when software iWarp acts as the sender
or the receiver side due to the fact that the load of sending
a stream of messages can be quite different from receiving
them. Figure 2(a) shows the throughput for stock TCP on
both sides, and back-to-back Ammasso RNICs, as well as
an Ammasso card talking to kernel software iWarp as both
a sender and receiver, and a pure software situation.

The TCP curve is consistently above the others by about
10 Mb/s, but this extra performance comes at a cost in
processor utilization as we shall see later. The pure soft-
ware iWarp configuration, SW→SW, tracks the TCP curve
in shape but lower by 10 Mb/s, while the curves involv-
ing a hardware Ammasso RNIC show a slight performance
degradation at small message sizes, especially when hard-
ware is the sender. This may be due to the apparent com-
plexity involved in transmitting messages in the Ammasso
RNIC implementation as the next section will show.

5.4 Comparison Against User Space Stack

We measured the differences between this kernel space
implementation and our previous work in implementing an
iWarp stack in user space [5]. Throughput results are shown
in Figure 2(b) where there are two curves for each imple-
mentation, one with the CRC calculation and verification
included and another with CRC disabled. The kernel and
user space versions are essentially identical, and both suffer
only a small (8 Mb/s) performance penalty due to the pres-
ence of the CRC. Again, in contrast to our previous work,
the effect of the CRC on performance is very slight perhaps
due to the use of more efficient host processors in this work.

4 B messages 64 kB messages
kernel with CRC 20.3 ± 0.2 615.5 ± 1.2
user with CRC 19.6 ± 0.2 612.3 ± 1.9
kernel without CRC 20.1 ± 0.2 604.5 ± 0.8
user without CRC 19.5 ± 0.2 602.7 ± 0.8

Table 2. User vs kernel space latency (µs).

Turning our attention to latency, the first two lines of Ta-
ble 2 compare the two implementations with CRC enabled,
as is required by the MPA specification. There is a small
(4%) latency penalty to using the kernel iWarp stack. Pos-
sible reasons for this could be that the completion queues
live in kernel space, or the need to use kmap and kunmap
to access user data before each send or receive operation.
For completeness we also compare the two versions with
CRC disabled and see no effect except a throughput-related
degradation for large messages.



 750

 800

 850

 900

 950

 1000

4 MB1 MB256 kB64 kB16 kB4 kB1 kB

T
hr

ou
gh

pu
t (

M
b/

s)

Message size

TCP
HW→HW
SW→HW
HW→SW
SW→SW

 750

 800

 850

 900

 950

 1000

4 MB1 MB256 kB64 kB16 kB4 kB1 kB

T
hr

ou
gh

pu
t (

M
b/

s)

Message size

Kernel without CRC
User without CRC

Kernel with CRC
User with CRC

Figure 2. (a) Throughput overview. (b) User space vs. kernel space throughput.

 0

 20

 40

 60

 80

 100

4 MB1 MB256 kB64 kB16 kB4 kB1 kB

C
P

U
 L

oa
d 

(%
)

Message Size

Receiver
Sender

 0

 20

 40

 60

 80

 100

4 MB1 MB256 kB64 kB16 kB4 kB1 kB

C
P

U
 L

oa
d 

(%
)

Message Size

Receiver
Sender

Figure 3. Host CPU utilization for a node using the hardware iWarp stack when connected to a peer
with either (a) hardware or (b) software iWarp stack.

5.5 CPU Utilization

The main goal of our work, and one of the key reasons
to adopt the iWarp protocol is the benefit of reduced CPU
utilization. We show the percentage of the single host pro-
cessor consumed by networking load for various configura-
tions in Figures 3 and 4 as a function of message size.

An brief explanation of the figures aids in understanding
what is going on. In figures 3 (a) and (b), what is shown is
the percentage of CPU being used by a host equipped with a
hardware iWarp card. In 3(a) we show what happens when
the other host is equipped with a hardware iWarp adapter,
and in (b) we show what happens when the other host is
running our software iWarp stack only. In Figure 4(a) we
show the CPU usage of a host communicating with another
host using only standard TCP sockets, as both a sender and
receiver. Lastly in Figure 4(b) we have the CPU utilization
for a host using our kernel software iWarp stack as both a
sender and receiver, and communicating with a hardware

iWarp equipped host. The difference between Figure 4(b)
and 3(b) is that in 3(b) we are looking at the CPU usage on
the hardware iWarp end, where as in 4(b) we are looking at
CPU usage on the software iWarp end.

This data was collected by running our throughput tests
while a low-priority program measured available CPU cy-
cles and reported the load periodically [12]. Error measure-
ments show the variation in load during each approximately
10 second throughput test. Because the throughput achieved
by all the configurations are essentially the same as seen in
Figure 2(a), direct comparisons of the processor utilization
curves is valid.

We see from looking at the figures that the CPU utiliza-
tion of iWarp is generally much lower than for TCP due to
the offloading of much of the protocol work to the iWarp
RNIC. It appears that sending small messages is a CPU in-
tensive task for this particular iWarp adapter, but this a bit
misleading. What is going on is that the hardware iWarp
adapter is doing more work, sending more messages in a



 0

 20

 40

 60

 80

 100

4 MB1 MB256 kB64 kB16 kB4 kB1 kB

C
P

U
 L

oa
d 

(%
)

Message Size

Receiver
Sender

 0

 20

 40

 60

 80

 100

4 MB1 MB256 kB64 kB16 kB4 kB1 kB

C
P

U
 L

oa
d 

(%
)

Message Size

Receiver
Sender

Figure 4. (a) Host CPU utilization, both nodes using TCP, not iWarp. (b) Host CPU utilization for a
node using the software iWarp stack when connected to a peer using the hardware iWarp stack.

shorter amount of time. As for the “dip” in load in the TCP
receiver curve, we have no explanation, and have found that
this is a repeatable result.

As mentioned previously Figure 3(b) shows the CPU uti-
lization experienced by a host that has a hardware iWarp
RNIC but is communicating to another host that is using our
kernel space software iWarp stack. These curves are almost
identical to those in Figure 3(a) and supply the key results
of this work: the host with the hardware iWarp RNIC can
now take advantage of its protocol offload and zero-copy
benefits due to the software iWarp protocol used by its peer.

In contrast, Figure 4(b) shows the near full processor
load required by the software iWarp implementation. While
not shown here, much of this load comes from the CRC-32c
calculation as required by the MPA specification to support
TCP networks. Without the CRC these curves more closely
resemble the TCP curves in Figure 4(a).

6 Related and Future Work

Work related to zero-copy, OS bypass, and RDMA in
general has been quite extensive in the past decade as prob-
lems with traditional TCP networking continue to surface.
The performance of the Ammasso 1100 RNIC has also been
the subject of at least one paper [7].

One project which somewhat parallels our work is an-
other software implementation of iWarp [2], but takes a
significantly different approach to the user interaction and
is not compatible with existing iWarp hardware. The goal
of [2] is to enable any sockets program (one that uses read
and write function calls) to run over iWarp. While ad-
mirable from the point of compatibility with an existing
code base, the performance of this approach is necessarily
limited and we prefer to consider future applications that
will target an RDMA-capable API.

In addition to work on the underlying transport, there
has been much activity in application programming inter-
faces. Some well known examples are the DAT Collabo-
ratives, DAPL [8], Mellanox’s VAPI [10], a new API from
the OpenIB Alliance [15], and of course the RDMA Con-
sortium’s iWarp verb specification [9].

In the future we plan to investigate a multi-threaded im-
plementation of the iWarp software stack, and port some
kernel-resident applications such as NFS. Integrating MPA
into TCP may simplify the in-kernel interfaces somewhat
as well. We have also implemented a file transfer utility and
are pursuing a wide-area evaluation of iWarp. At this time
we are able to confirm that our software iWarp stack is func-
tional over the WAN when interoperating with an Ammasso
iWarp adapter on the remote end. Performance analysis of
iWarp at larger scale than presented in [7] is also currently
underway.

7 Conclusion

To summarize we have demonstrated a software kernel-
based iWarp stack that will enable a remote host to take
advantage of its hardware iWarp. Our main contribution
is in implementing and demonstrating the interoperability
of a kernel-based software iWarp implementation. The
results show the advantages of single-sided acceleration
where hardware-enabled servers can sustain their perfor-
mance with all the advantages of zero-copy and CPU of-
fload even when clients are not similarly equipped. Not only
user-space but kernel-space applications like NFS will now
be able to take advantage of iWarp.

In the near future we expect to see more 10 Gb/s net-
works and iWarp adapters come into use. While a modern
CPU can keep up with the demands of TCP processing on a
1 Gb/s network, processor utilization to feed faster networks



will soon become more important.
The work presented here should further more widespread

acceptance of iWarp and for other future research into iWarp
and related protocols. The software discussed is freely
available [6] for use under the GNU General Public License.

Acknowledgment

We heartily thank the reviewers for their thoughtful com-
ments.

References

[1] Ammasso Inc. Ammasso 1100 product description. http://
www.ammasso.com/products.htm, 2005.

[2] P. Balaji, H.-W. Jin, K. Vaidyanathan, and D. Panda. Sup-
porting iWARP compatibility and features for regular net-
work adapter. In Proceedings of the IEEE Cluster 2005 Con-
ference, RAIT Workshop, 2005.

[3] G. Buzzard, D. Jacobson, M. Mackey, S. Marovich, and
J. Wilkes. An implementation of the Hamlyn send-managed
interface architecture. In Proceedings of OSDI’96, Oct.
1996.

[4] P. Culley, U. Elzur, R. Recio, S. Bailey, and J. Carrier.
Marker PDU aligned framing for TCP specification. http://
www.ietf.org/internet-drafts/draft-ietf-rddp-mpa-02.txt.

[5] D. Dalessandro, A. Devulapalli, and P. Wyckoff. Design
and implementation of the iWarp protocol in software. In
Proceedings of PDCS’05, Phoenix, AZ, Nov. 2005.

[6] D. Dalessandro, A. Devulapalli, and P. Wyckoff. Soft-
ware iWarp user and kernel software distribution.
http://www.osc.edu/research/network file/projects/iwarp/
index.shtml, 2005.

[7] D. Dalessandro and P. Wyckoff. A performance analysis
of the Ammasso RDMA enabled ethernet adapter and its
iWARP API. In Proceedings of RAIT’05 in conjunction with
Cluster’05, Sept. 2005.

[8] DAT Collaborative. Direct access transport. http://
www.datcollaborative.org.

[9] J. Hilland, P. Culley, J. Pinkerton, and R. Recio. RDMA Pro-
tocol Verbs Specification. http://www.rdmaconsortium.org/
home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf, April
2003.

[10] InfiniBand Trade Association. InfiniBand Architecture Spec-
ification, Oct. 2004.

[11] C. Kurmann, M. Muller, F. Rauch, and T. Stricker. Specu-
lative defragmentation: A technique to improve the commu-
nication software efficiency for gigabit ethernet. In HPDC
2000, 2000.

[12] A. Morton. Cyclesoak. http://www.zipworld.com.au/˜akpm/
linux/#zc.

[13] MPI Forum. MPI: A Message-Passing Interface Standard,
Mar. 1994.

[14] Myricom. Myrinet. http://www.myri.com/.
[15] Open Infiniband Alliance. OpenIB. http://www.openib.org/.
[16] Open Infiniband Alliance. OpenIB-iWarp. http://

www.openib.org/docs/pr071305.doc.

[17] J. Pinkerton, E. Deleganes, and S. Bitan. DDP/RDMAP
security. http://www.ietf.org/internet-drafts/draft-ietf-rddp-
security-07.txt, Apr. 2005.

[18] Quadrics. http://doc.quadrics.com.
[19] R. Recio, P. Culley, D. Garcia, J. Hilland, and B. Metzler. An

RDMA protocol specification. http://www.ietf.org/internet-
drafts/draft-ietf-rddp-rdmap-04.txt, Apr. 2005.

[20] H. Shah, J. Pinkerton, R. Recio, and P. Culley. Direct
data placement over reliable transports. http://www.ietf.org/
internet-drafts/draft-ietf-rddp-ddp-04.txt, Feb. 2005.

[21] P. Shivam, P. Wyckoff, and D. K. Panda. EMP: zero-copy
OS-bypass NIC-driven gigabit ethernet message passing. In
Proceedings of SC’01, Denver, CO, Nov. 2001.

[22] J. Stone and C. Partridge. When the CRC and TCP check-
sum disagree. ACM Sigcomm, Sept. 2000.

[23] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: a
user-level network interface for parallel and distributed com-
puting. In Proceedings of SOSP’95, Copper Mountain, Col-
orado, Dec. 1995.


