Design and Implementation of the iWarp Protocol in Software

Dennis Dalessandro
Ohio Supercomputer Center
1 South Limestone St., Suite 310
Springfield, OH 45502
dennis@osc.edu

Abstract

The term iWarp indicates a set of published protocol
specifications that provide remote read and write access to
user applications, without operating system intervention or
intermediate data copies. The iWarp protocol provides for
higher bandwidth and lower latency transfers over existing,
widely deployed TCP/IP networks. While hardware imple-
mentations of iWarp are starting to emerge, there is a need
for software implementations to enable offload on servers as
a transition mechanism, for protocol testing, and for future
protocol research.

The work presented here allows a server with an iWarp
network card to utilize it fully by implementing the iWarp
protocol in software on the non-accelerated clients. While
throughput does not improve, the true benefit of reduced
load on the server machine is realized. Experiments show
that sender system load is reduced from 35% to 5% and re-
ceiver load is reduced from 90% to under 5%. These gains
allow a server to scale to handle many more simultaneous
client connections.

1 Introduction

The race between increasing network speeds and in-
creasing processor capability has been on for decades. Cur-
rent generation commodity processors are capable of keep-
ing a gigabit network pipe full, but fall short when presented
with a ten gigabit network. Traditional packet processing
requires many calculations and memory operations by the
CPU in a computer hosting a network interface card. This
processing limits the achievable data throughput of faster
network technologies. Furthermore, network processing de-
mands compete with user applications for available CPU
cycles. It is possible, especially in ten gigabit networks,
that the CPU spends more time on network processing than
on real computations, in effect starving the application.

To avoid this CPU bottleneck, mechanisms such as Re-
mote Direct Memory Access (RDMA) [16] have been de-
veloped. RDMA allows network adapters to move data di-
rectly from one machine to another without involving ei-

Support for this project was provided by the Department of Energy
ASC program and Sandia National Laboratories.

Ananth Devulapalli
Ohio Supercomputer Center
1 South Limestone St., Suite 310
Springfield, OH 45502
ananth@osc.edu

Pete Wyckoff
Ohio Supercomputer Center
1224 Kinnear Road
Columbus, OH 43212
pw@osc.edu

ther host processor. A number of research projects have
used RDMA to increase network performance, including
U-Net [21], Hamlyn [2], and EMP [20]. Commercial prod-
ucts are available as well, such as VIA [7], Infiniband [9],
Quadrics [15], and Myrinet [13].

A second mechanism that avoids CPU overheads is Op-
erating System Bypass. This is a scheme in which the user
application interacts directly with the network card, avoid-
ing overheads from system calls, hardware interrupts, and
context switches. As a result, latency and overhead of data
motion is significantly reduced.

iWarp is a recent protocol specification that serves as
a convergence point for these techniques and previous re-
search efforts. It is an RDMA implementation on top of ex-
isting Internet protocols, namely TCP or SCTP on IP, giving
it the major advantage of being compatible with the exist-
ing Internet infrastructure. iWarp uses both RDMA and OS
bypass to move data without the CPU or operating system
being involved, greatly increasing performance.

The other desirable feature of iWarp is protocol offload.
The RDMA-capable network adapter also handles all net-
work processing, similar to a TCP Offload Engine (TOE).
As the network adapter deals with most aspects of network
processing, the CPU can continue application processing
concurrently with network transfers.

Specifications for the iWarp protocol and software stack
exist as IETF RFCs, and 1 Gb/s and 10 Gb/s hardware prod-
ucts are available at present.

Commodity implementations of gigabit iWarp hardware,
such as the Ammasso 1100 [1] are beginning to appear, as
well as a 10 gigabit implementation from Chelsio [3]. At
present the cost per port for a 10 gigabit Ethernet switch
is very high. In fact, more expensive than an InfiniBand
switch. While 10 gigabit may be too costly for most instal-
lations, gigabit switches are relatively cheap, and common
place. Given the adoption history of gigabit Ethernet [22] it
is clear that the cost of 10 gigabit Ethernet will drop.

In the next section we discuss the motivation for a soft-
ware iWarp stack, followed by an in-depth description of
the iWarp specification. The rest of the paper is dedicated
to describing our software design and implementation, as
well as measuring its performance.



2 Motivation

There are many reasons to develop a software implemen-
tation rather than using an existing or new hardware im-
plementation. The first motivating factor is to enable of-
fload processing on servers. Since iWarp-capable Ethernet
adapters are only beginning to enter the market, at some-
what high prices compared to non-iWarp devices, it is likely
that organizations will choose to put iWarp adapters in only
the most heavily loaded servers. This is where the offload
features will provide the most benefit. However, both sides
of a connection must agree to use the iWarp protocol, oth-
erwise the data transmission must use the traditional socket
semantics, requiring multiple data copies as well as more
CPU cycles.

Although a software implementation of iWarp on a client
machine should not be expected to require less processor
utilization or to provide better performance, it will enable
the server with which the client communicates, to realize
the benefits of having a hardware iWarp adapter.

The second expected use for this work is as a vehicle for
future research into the iWarp protocol and its application.
Due to the fact that few iWarp hardware components are
available on the market, little in-depth work has been done
with them for particular user communities, such as high-
performance computing, file and block storage, and trans-
action processing. The impacts on applications, higher-
layer protocols, system-area networks, wide-area networks
and many other aspects have yet to be analyzed. In having
a user-space implementation of iWarp, we can deploy the
software on arbitrary machines at no cost, and study such
aspects at a large scale. This advance planning is crucial,
both to influence evolving hardware designs and to plan for
future adoption of high-speed protocol-offload NICs in our
computing environments.

Finally, having an open-source implementation of the
iWarp protocol that is fully compliant with existing spec-
ifications will permit testing of a wide array of applications
and scenarios, as well as give developers a head start on
moving applications to iWarp devices. The code can be used
to verify conformance of new hardware implementations as
it is easily customizable to generate particular, perhaps er-
roneous, responses in a given situation to analyze behavior
of the device under test.

3 iWarp

The terms RDMA over TCP/IP, RDMA over Ethernet,
and iWarp all refer to the same thing: a zero-copy, OS-
bypass mechanism for implementing Remote Direct Mem-
ory Access (RDMA) operations over a standard TCP/IP-
based network.

To facilitate RDMA, special hardware is required in
the form of an RDMA-enabled Network Interface Card
(RNIC). The cables and switching infrastructure are generic

Application Application
Verbs API Sockets API
Presentation Presentation
& Session & Session
RDMAP
DDP
MPA
Transport Transport
(TCP) (TCP)
Network (IP) Network (IP)
Data Link Data Link
Physical Physical

Figure 1. iWarp and TCP Protocol Stacks.

Ethernet equipment. In making use of the existing network
infrastructure, iWarp has a unique capability that its special
purpose counterparts can never match, that is the ability to
work in the wide area network.

The iWarp protocol stack is shown in Figure 1. It con-
sists of a verbs or API layer [8], an RDMA protocol layer
(RDMAP) [17], a direct data placement layer (DDP) [19],
and a Marker PDU Aligned (MPA) Framing layer [4]. MPA
is built on top of standard TCP/IP layers.

The motivation for the RDMAP, DDP and MPA layers in
the stack is to facilitate reliable communication with hard-
ware that offloads processing of the TCP/IP stack, such as
an RNIC. The intention may be for this processing to be
done in hardware, but the specification does not restrict us
to hardware only, and as such software implementations are
also potentially of value.

The verbs or API layer is the layer that is exposed to
user applications. The key advantage of the verbs layer
is to provide direct access to the RNIC hardware. Native
RDMA operations are available via the verbs to any appli-
cation. iWarp has the advantage of a verbs specification.
This means that while there is no specific API that a hard-
ware vendor must provide, there is a specification for cre-
ating APIs that explicitly states which functions must be
available, the parameters, and the semantics of the opera-
tion. Having a verbs specification is also a hindrance. It
means every vendor potentially has a different API. Luckily
we have alternatives in the form of middleware APIs such as
the Message Passing Interface (MPI) [12], which is the de
facto form of message passing in the HPC world, as well as
the Direct Access Programming Library (DAPL) [6]. DAPL
is an API that enables code written for one particular device
to work on another that is DAPL compliant. For instance,
code written for a particular iWarp implementation can be
run on an InfiniBand implementation, and vice versa, re-
quires very minimal changes, in most cases just one line of
code.



The verbs layer communicates with the RDMAP layer
which provides the semantics for the RDMA operations.
RDMAP [17] provides read and write services directly to
applications and enables data to be transferred directly into
application buffers without intermediate data copies. It also
enables an OS-bypass implementation.

The Direct Data Placement Protocol (DDP) [19] enables
an upper-layer protocol, in this case RDMAP, to send data
to a host without requiring the receiver to place the data ini-
tially in an intermediate buffer. This can enable the receiver
to consume substantially less memory bandwidth than a
buffered model because it is not required to move the data
from the intermediate buffer to the final destination. This
model also saves CPU cycles that would otherwise be re-
quired to copy the data and removes the CPU bandwidth
limitation on network performance.

The DDP protocol is a message-oriented protocol, while
TCP is a streaming byte-oriented protocol, thus a framing
mechanism is necessary to detect record boundaries. The
MPA specification [4] describes one such framing mecha-
nism that uses periodic markers in the byte stream to facil-
itate record detection. It also specifies a stronger CRC-32¢
data integrity calculation [18] due to the inadequacy of the
TCP CRC.

4 Design

In this section we give an overview of some of the de-
sign issues that we faced during the implementation of our
iWarp software stack. One of the most fundamental design
choices was the API that we would export to user applica-
tions. We have chosen to base our API off of the original
verbs specification [8] from the RDMA Consortium [16].
We decided not to go directly with a DAPL [6] or an SDP
[14] API due to complexity, also it has been shown that [5]
running sockets over a fast RDMA based network does not
necessarily allow for the full performance of the network.

In implementing a subset of the most necessary verbs
we are in turn able to limit ourselves to a subset of RDMAP
layer communication primitives. The DDP and MPA lay-
ers are functionally complete and are able to produce TCP
packet aligned MPA frames for transmission, along with do-
ing the CRC-32c calculation and validation.

Another important design issue was the amount of inter-
dependency between the verbs API layer and the underly-
ing iWarp software stack. A carefully planned interface be-
tween the verbs and the underlying software stack has been
developed with a minimal number of functions available to
the verbs. This facilitates changes in the underlying code
base. It is thus important that the only layer the verbs may
interface with is RDMAP.

Naturally, the data structures shared between the verbs
and the software stack is a key design decision as well. Thus
the only data structure shared by the verbs and the lower

layer (RDMAP) is the Completion Queue (CQ). The lower
layer will produce an entry onto the CQ, while the verbs
layer then consumes the entry.

5 Implementation

Our implementation has two main modules, one for the
iWarp stack and another for the verbs layer. As discussed in
previous sections, the iWarp stack can be either in the kernel
or userspace, but the verbs must be in userspace. We have
currently implemented both verbs and iWarp stack in user
space for use with typical non-kernel-resident applications.

An ideal implementation would have a receive thread
and a send thread for maintaining independent progress for
both sends and receives. But since multi-threading would
increase complexity and the validation time, for the ini-
tial implementation we restricted ourselves to the single-
threaded model. As a result, to ensure receive progress, the
receiver must call a progress function, so that messages con-
tinue to arrive. The verbs layer exports the progress function
to the user application for this purpose.

Sends are implemented as blocking but receives are im-
plemented as non-blocking. For sends, we tried to maintain
a close resemblance to non-blocking semantics of posting
a work request and polling for the request. Sends and re-
ceives are mapped directly to underlying TCP function calls
exported by the kernel. The choice of single threaded model
constrained us to blocking sends.

The MPA specification [4] lays out the negotiation proto-
col for binding DDP with MPA. During our implementation
we found that one of our hardware iWarp adapters, the Am-
masso 1100 [1], does not yet support MPA markers. As a
result we had to construct a generalized implementation of
the MPA connection setup phase. Our implementation tol-
erates such limitations of hardware, by following the least
common capabilities that hardware can handle. We also per-
mit disabling the CRC calculation to isolate the effect it has
on performance.

On a DDP send, as initiated by an send, RDMA write, or
RDMA read request from the upper layer, our DDP library
generates multiple DDP segments. Each segment contains a
DDP header that describes the disposition of the message to
the receiver. Each segment is smaller than the payload size
of the underlying reliable transport. Our implementation
uses the kernel system calls socket (), bind (), listen()
and connect () through the C library to set up a TCP con-
nection.

Since iWarp is a zero-copy protocol, we want to limit
any copies of data introduced by our software only version.
We ensure that no additional copies are made in our soft-
ware iWarp stack. This makes the stack more efficient and
conforms more to the specification. Since our initial imple-
mentation is in user-space there is a copy involved to kernel
space, both at sending and receiving ends. This is unavoid-



able when using the kernel sockets interface to TCP.

In a hardware implementation, the RNIC would han-
dle incoming DDP segments, placing them automatically
in user memory, and signal the application when the entire
message is complete. The delivery mechanism is unspeci-
fied, and could be a processor interrupt or adding an entry to
a completion queue somewhere. (The RDMA layer defines
completion, but leaves the mechanism up to the implemen-
tation, hinting that a queue is a likely way to do it.) Our
software implementation uses a poll () system call to wait
until data arrives on the socket from the TCP/IP stack and
network card. It then reads the DDP header into a small
buffer, inspect the packet, determine the data destination,
and read the rest of the segment directly into the appropri-
ate memory location in the application.

6 Experiments

In this section we describe the experiments that we have
conducted in order to measure the performance of our soft-
ware iWarp stack. We perform three sets of tests: latency,
bandwidth and CPU utilization. Latency and bandwidth
are the basic metrics by which network performance is an-
alyzed. Considering CPU utilization shows the effects of
iWarp protocol features on reducing host processor load.
We show that it is possible for a host running a hardware
iWarp implementation to benefit from the zero-copy proto-
col offload provided by its hardware when communicating
with a host running a software iWarp implementation.

Our experimental testbed consists of two IBM x-series
servers, each equipped with a single 2.8 GHz Pentium 4
Xeon, with 1.5 gigabytes of RAM. The on-board Intel
82546EB copper gigabit ethernet controller was utilized for
all software tests. Each server is also equipped with an
Ammasso 1100 RNIC [1]. The Ammasso cards are early
FPGA-based versions on loan for evaluation from Am-
masso Inc.

Various configurations of network cards were used, both
the Ammasso RNICs (denoted “hw” in the plots) and tra-
ditional ethernet with our iWarp software implementation
(“sw”). TCP/IP-only tests were performed as well. All of
these tests were conducted with the devices connected back-
to-back via a standard Cat5 Ethernet crossover cable.

6.1 Latency Test

The latency referred to is the half round trip (RTT/2) time
it takes for a ping-pong of a particular size. The ping is
made via an RDMA write as is the pong. Each side polls
the last byte of its buffer to determine when an RDMA write
has completed. This ping-pong process is repeated a num-
ber of times, 50 iterations in our case, and the average and
standard deviation are computed. These values are reported
in Table 1.

The results reflect a few interesting points. Given the la-

4 byte messages | 64 kB messages
hw—hw 15.0+ 0.9 609.7 £ 59
sw—sw (crc off) 62772 687.5+ 27.6
SW—sw (crc on) 622+ 1.3 1401.9 £+ 265.5
hw—sw 62.8+29 950.4 £ 459
sw—hw 61.2+28 9379 £ 16.0
tcp—tep 62.7+4.7 6245+ 23.0

Table 1. Half-round trip latencies (us)

tency for TCP to TCP as a baseline, we see that our iWarp
software stack adds negligible additional latency for small
messages. For large messages, there is a small overhead to
the iWarp layer when CRC is off, and a considerable ex-
pense (about 50% longer) to perform a CRC calculation on
either the sender or receiver. Hardware implementations
are not affected since the CRC is performed in hardware
as the data is received or transmitted, as evidenced in the
hardware-only results table.

The CRC calculation also has an impact on the hybrid
tests, either software iWarp sending to a hardware receiver
or vice versa. Due to the fact that the Ammasso RNIC does
not negotiate per spec we are forced to use a CRC calcu-
lation on the software side as well. Again we see that the
latencies for small messages are not affected much by the
CRC calculation, but the larger message shows an impact.

6.2 Throughput Test

To examine the throughput of our implementation, we
use a unidirectional spray test where the sender initiates
RDMA wrrites to the receiver as fast as it can. The receiver
polls on the last byte of the receive buffer, waiting for the
value to change that indicates that the last RDMA write has
completed, then sends a four-byte message to the sender in-
dicating completion. The sender measures the overall time
to complete the RDMA writes and receive this small com-
pletion message and calculate the throughput (in millions of
bits per second). The results are shown in Figure 2.

The top curve in the figure is raw TCP. It represents the
lowest point in the software stack and achieves the high-
est possible throughput. Just below that is the configuration
where the hardware RNIC serves as both the sender and re-
ceiver. It performs the CRC calculation and verification as
required by the specifications as mentioned earlier. Adja-
cent to this curve is the software-to-software configuration,
with the CRC disabled, showing that our implementation is
able to achieve the full line rate of the gigabit Ethernet net-
work. When our software implementation is set to enable
CRC, performance drops about 100 Mb/s. Identical results
are achieved when the hardware RNIC is the sender and
our software implementation receives packets; however, the
reverse case performs better, demonstrating that the CRC
validation on receive is more expensive than the generation
at transmit time.



1000

950 -

900 -

850 -

800 -

750

Throughput (Mb/s)

tep—otep ———
700 + @ hw—hw +—+—
SW—SW NO Crc +——>—

sw—hw ——
650 SW—SW ——K—
hw—sw —H—

600 L L L L L
1kB 4 kB 16 kB 64 kB 256 kB 1MB 4 MB

Message size

Figure 2. Throughput versus message size.

6.3 System Load

The system load, which accounts for both user and kernel
CPU time and memory subsystem load, was measured for
the throughput experiments described above. A low-priority
background task is spawned which runs concurrently with
the process whose load is to be measured. The load is com-
puted subtractively by measuring the performance degrada-
tion of the background task relative to when the background
task is run by itself. Figures 3 and 4 show the plots of rel-
ative system load at sender and receiver for large and small
messages respectively.

100+

90+

80

70+

i tep

SW->SW Crc
SW->SW Nocrc
B8 hw->sw crc
= sw->hw crc
B hw->hw

60

50

40

System Load (%)

30

Figure 3. Large message system load (68 kB).

The benefits of hardware offload are clearly identified in
the very low utilization on the sender side when the RNIC
is the sender. The corresponding TCP sender load is larger,
around 35%, and adding our software iWarp stack brings
that up to 50%. Calculating the CRC raises the total to 70%.

For receives, the load required by the hardware receiver
is almost unmeasurable, even in the case when a software

100

90 N

80+

70+

B tep

SW->SW Crc
SW->SW nocrc
B8 hw->sw crc
= sw->hw crc
B hw->hw

60+

50

40

System Load (%)

sender receiver

Figure 4. Small message system load (4 kB).

client is sending the messages. Both the TCP and software
iWarp receivers load the system almost completely as they
copy messages from the network through the kernel to their
destination application buffers.

Compared to large messages, the load at the sender is
a bit higher in the software case due to the increased load
from more frequent packet processing for a given transmis-
sion rate, around 10-20% in our results. The hardware case
also shows an increase due to more work required of the
CPU to initiate message transmission.

For small messages, software iWarp with CRC enabled is
about 40% more expensive than TCP at the sender. Without
CRC, the system load is about 20% more expensive than
TCP. In the case of hardware sender to software receiver,
the system load appears to be less than the pure hardware
case, but this configuration achieves less throughput leading
to less work per unit time for the sender.

On the receiving side, all software iWarp and TCP cases
show nearly 90% system load, because the common under-
lying TCP packet and header processing on receive are CPU
intensive. Differences due to CRC calculation are not seen
due to the domination of TCP packet processing. When the
hardware implementation servers as receiver, its load is near
zero regardless of sender.

These results demonstrate that a hybrid implementation
of software and hardware iWarp provides a low-cost means
of implementing iWarp while still exploiting the advantages
of network offload.

7 Related Work

There has been extensive research into zero-copy, OS-
bypass, and RDMA networking [21, 2, 20]. We take advan-
tage of this work to build a software implementation of the
iWarp suite of specifications that permits an iWarp-enabled
server to take full advantage of its network interface card.



Other technologies [7, 9, 15, 13] use similar techniques to
accelerate networking, but, being specialty hardware can
not take advantage of the existing installed Ethernet base.

Much work into appropriate application programming
interfaces (APIs) is underway. The DAT Collaborative’s
DAPL [6] API, and the InfiniBand verbs [9] are two well
known examples, and have had an influence on our choice
of function signatures. The IT-API [10] is similar to the In-
finiBand verbs but attempts to accommodate a wider range
of technologies, including both iWarp and IB.

King and Berry [11] analyze system overheads incurred
in processing of a software iWarp stack to determine the
feasibility of deploying non-offload solutions. They project
performance to near-future commodity CPUs and 10 Gb/s
networks and show that the CRC calculations consume the
overwhelming majority of processor cycles. Their exper-
imental environment was a processor simulator to allow
gathering detailed information while our work is aimed to
real-world deployment.

8 Future Work

To enable use of the iWarp software implementation by
in-kernel clients, we will adapt the user-space version to
produce a kernel-space implementation. This will permit
exploration of the use of iWarp for many applications such
as NFS for file storage and iSER (iSCSI over RDMA) for
block storage. This will reduce the system call overhead.
For maintaining independent progress of send and receives,
multi-threading is a natural choice. Multi-threading will
also enable non-blocking sends and receives. We are cur-
rently in the process of migrating to a multi-threaded im-
plementation of iWarp stack.

9 Conclusion

The work presented here allows a server with an iWarp
network card to take full advantage of the zero-copy and
protocol offload provided by the card even when clients are
not equipped with such a device. While throughput will
necessarily be lower if the clients are using a software im-
plementation, the true benefit of reduced load on the server
machine can still be realized. Experiments demonstrated
that for large message sizes, load for transmission is re-
duced from 35% to 5% and for reception is reduced from
90% to under 5%. These gains allow a server to handle
many more client communications. Other uses for this work
are in protocol validation and upper-layer protocol and ap-
plication research.

References

[1] Ammasso Inc. Ammasso 1100. URL
http://www.ammasso.com/products.htm.

[2] G. Buzzard, D. Jacobson, M. Mackey, S. Marovich, and
J. Wilkes. An implementation of the Hamlyn send-managed
interface architecture. In Proc. of OSDI’96, October 1996.

(3]

(4]

(5]

(6]

(7]

8]

(9]

(10]

(11]

(12]

(13]
(14]

[15]
(16]

(171

(18]

(19]

[20]

(21]

(22]

Chelsio Communications. T210 10GbE protocol engine.
URL http://www.chelsio.com/products/T210.htm.
P. Culley, U. Elzur, R. Recio, S. Bailey, and J. Carrier.
Marker PDU aligned framing for TCP specification,
February 2004. URL http://www.ietf.org/
internet-drafts/draft-ietf-rddp-mpa-02.txt.
Dennis Dalessandro. Why RDMA? URL
http://www.osc.edu/ dennis/rdma/rdma.html.

DAT Collaborative. Direct access transport. URL
http://www.datcollaborative.org.

D. Dunning et al. The Virtual Interface Architecture. /[EEE
Micro, 18(2):66-76, 1998.

Jeff Hilland, Paul Culley, Jim Pinkerton, and Renato Recio.
RDMA Protocol Verbs Specification, April 2003. URL
http://www.rdmaconsortium.org/home/
draft-hilland-iwarp-verbs-vl.0-RDMAC%.pdf.
InfiniBand Architecture Specification. InfiniBand Trade
Association, October 2004. URL
http://www.infinibandta.org/specs/.

Internet Software Consortium. Interconnect transport API,
2004. URL http://www.theopengroup.org/.

Steven King and Frank Berry. Software RDMA over
TCP/IP on a general purpose CPU. In Proceedings of
RAIT’04 in conjunction with Cluster’04, San Diego, CA,
September 2004.

MPI: A Message-Passing Interface Standard. MPI Forum,
March 1994.

Myricom. Myrinet. URL http://www.myri.com/.

James Pinkerton, Ellen Deleganes, and Michael Krause.
Sockets Direct Protocol (SDP) for iWARP over TCP (v1.0),
October 2003. URL http://www.rdmaconsortium.org/
home/draft-pinkerton-iwarp-sdp-vl.0.pdf.
Quadrics. URL http://doc.quadrics.com.

RDMA Consortium. Architectural specifications for RDMA
over TCP/IP. URL http://www.rdmaconsortium.org/.
R. Recio, P. Culley, D. Garcia, J. Hilland, and B. Metzler.
An RDMA protocol specification, April 2005. URL
http://www.ietf.org/internet-drafts/
draft-ietf-rddp-rdmap-04.txt.

J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and
E. Zeidner. Internet small computer systems interface
(iSCSI). RFC 3720 (Proposed Standard), April 2004. URL
http://www.ietf.org/rfc/rfc3720.txt.

Hemal Shah, James Pinkerton, Renato Recio, and Paul
Culley. Direct data placement over reliable transports,
February 2005. URL http://www.ietf.org/
internet-drafts/draft-ietf-rddp-ddp-04.txt.
Piyush Shivam, Pete Wyckoff, and D. K. Panda. EMP:
zero-copy OS-bypass NIC-driven gigabit ethernet message
passing. In Proc. of SC ’01, Denver, CO, November 2001.
T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A
user-level network interface for parallel and distributed
computing. In Proceedings of SOSP’95, Copper Mountain,
Colorado, December 1995.

D. Zabrowski. 10 Gigabit Ethernet market opportunities.
URL http://www.s2io.com/news/events/webex/
DaveZabrowski.pdf.



