
Applications in Parallel MATLAB

Brian Guilfoos, Judy Gardiner, Juan Carlos Chaves, John Nehrbass, Stanley Ahalt, Ashok
Krishnamurthy, Jose Unpingco, Alan Chalker, Laura Humphrey, and Siddharth Samsi

Ohio Supercomputer Center, Columbus, OH
{guilfoos, judithg, jchaves, nehrbass, ahalt, ashok, unpingo, alanc, humphrey, samsi}@osc.edu

1. Introduction

 The parallel MATLAB implementations used for this
project are MatlabMPI[1] and pMatlab[1], both developed
by Dr. Jeremy Kepner at MIT-LL. MatlabMPI is based
on the Message Passing Interface standard, in which
processes coordinate their work and communicate by
passing messages among themselves. The pMATLAB
library supports parallel array programming in MATLAB.
The user program defines arrays that are distributed
among the available processes. Although communication
between processes is actually done through message
passing, the details are hidden from the user.

2. Objective

 The objective of this PET project was to develop
parallel MATLAB code for selected algorithms that are of
interest to the Department of Defense (DoD)
Signal/Image Processing (SIP) community and to run the
code on the HPCMP systems. The algorithms selected for
parallel MATLAB implementation were a Support Vector
Machine (SVM) classifier, Metropolis-Hastings Markov
Chain Monte Carlo (MCMC) simulation, and Content-
Based Image Compression (CBIC).

3. Methodology

3.1. SVM

 SVMs[1] are used for classification, regression, and
density estimation, and they have applications in SIP,
machine learning, bioinformatics, and computational
science. In a typical classification application, a set of
labeled training data is used to train a classifier, which is
then used to classify unlabeled test data. The training of
an SVM classifier may be posed as an optimization
problem. Typically, the training vectors are mapped to a
higher-dimensional space using a kernel function, and the
linear separating hyperplane with the maximal margin

between classes is found in this space. Some typical
choices for kernel functions are linear, polynomial,
sigmoid, and Radial Basis Functions (RBF). SVM
training involves optimizing over a number of parameters
for the best performance and is usually done using a
search procedure.
 The chosen implementation of the SVM classifier is
the “Sequential Minimal Optimization” algorithm.[7,8]
SMO operates by iteratively reducing the problem to a
single pair of points that may be solved linearly. The
problem is parallelized by passing subsets to nodes in the
cluster, and recombining the solved subsets to give a
partially solved problem. After reaching the “tip” of the
Cascade, the trained data set is passed back to the original
nodes to test for convergence. This process is repeated
until the support vectors have converged on the solution
to the problem as defined by all training points satisfying
the KKT conditions.
 This deliverable demonstrates that toy datasets can be
run through an SVM classifier implemented with the
SMO algorithm with a Cascade parallelization approach[3]
as shown in Figure 1, completely within native MATLAB
and MatlabMPI.[5] An example output is shown in
Figure 2. Figure 3 shows the median SVM algorithm
execution time versus number of processors for five trials
on a Pentium 4 cluster using 10000 samples in the
checkerboard pattern of Figure 2. Execution is fast in all
cases, with some possible benefit from added processors.
However, it appears that communication overhead may
start to outweigh this benefit as a larger number of
processors are used. There are clear improvements that
could be made to the codes (including tweaking the
Cascade code to encourage faster convergence and adding
implementations for alternative kernel functions), but this
is an encouraging proof-of-concept that should scale
reasonably well to larger problems.

3.2. MCMC

 The MCMC algorithm is used to draw independent
and identically distributed (IID) random variables from a

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

distribution π (x), which may be defined over a high-
dimensional space. In many cases of interest, it is
impossible to sample π (x) directly. MCMC algorithms
play an important role in image processing, machine
learning, statistics, physics, optimization, and
computational science. Applications include traditional
Monte Carlo methods, such as integration, and generating
IID random variables for simulations. MCMC also has
numerous applications in the realm of Bayesian inference
and learning, such as model parameter estimation, image
segmentation, DNA sequence segmentation, and stock
market forecasting, to name a few.
 We have successfully implemented the MCMC
algorithm in MATLAB, MatlabMPI, and pMATLAB.
The algorithm lends itself naturally to parallel computing,
so both the MatlabMPI and pMATLAB versions may be
run efficiently on multiple processing nodes. The code is
modular and designed to be customized by the user to
simulate any desired probability distribution, including
multivariate distributions.
 The MCMC algorithm works by generating a
sequence of variables or vectors Xi using a Markov chain.
The probability distribution of Xi approaches some
desired distribution π (x) as i → ∞. The update at each
step is accomplished using the Metropolis-Hastings
algorithm.[6] After some “burn-in” period, the current
value of Xi is taken as a sample of π (x). The only
requirement on π (x) is that a weighting function, or
unnormalized density function, may be calculated at each
value of x.
 The algorithm has two parts: 1) proposing a value
for Xi + 1 given the value of Xi, based on a proposal density
function, and 2) accepting or rejecting the proposed value
with some probability. The proposal density function in
the general case takes the form q(a,b), where a is the
value of Xi and b is the proposed value for Xi + 1 . In our
implementation, proposals are restricted to the form b = a
+ R, where R is a random variable with a probability
density function p(r). The function p(r) need not be
symmetric.
 The proposed value of Xi + 1 is accepted with

probability α, where ()
()

()
()

min ,1
b p r

a p r

π
α

π

−
= ⋅

⎛ ⎞
⎜ ⎟
⎝ ⎠

. If the

value is not accepted, then Xi + 1 = Xi. Note that α is
calculated using the unnormalized density function for the
target density π (x). If the proposal density is symmetric,
p(r) = p(−r) and the second factor disappears.
 In our implementation, the user provides functions
for the target and proposal density functions, as well as
the number of burn-in iterations to use between samples,
and the number of samples to be drawn. One of our goals
was to make it easy for users to customize the code to
generate other probability distributions, use different
proposal densities, and change various parameters. Two

examples are included with the code. The first example
simulates samples from a bivariate normal distribution
using a uniform proposal density. The second example
simulates samples from a Rayleigh distribution using an
asymmetric proposal density.
 The problem of generating independent samples of a
random variable is naturally parallel. Both of the parallel
versions of the algorithm simply divide the number of
samples to be generated among the available processors.
Each processor generates its share of the total samples
separately from the others. The samples are then
combined into one output file. Figure 4 shows an
example output. The left graph shows the desired
distribution: a two-dimensional normal distribution with
zero mean and a non-diagonal covariance matrix. The
right graph shows 1000 samples generated by the MCMC
routine using a uniform proposal density function.
Figure 5 shows the median time over five trials to
generate these 1000 samples using 1000 burn-in iterations
between samples on a Pentium 4 cluster. The execution
time decreases with diminishing returns as more
processors are added.

3.3. CBIC

 A typical image compression system applies the same
compression strategy to the entire image, effectively
spreading the quantization error uniformly over the
image. This effectively limits the compression ratio to the
maximum that can be tolerated for the important and
relevant portions of the image. However, in many
applications, the portion of the image that is of interest
may be small compared to the entire image. For example,
in a SAR image taken from an aircraft, only the portion of
the image containing the target of interest needs to be
preserved with high quality; the rest of the image can be
compressed quite heavily. This leads to the idea of CBIC,
in which selected portions of the image are compressed
losslessly, while the rest of the image is compressed at a
high ratio. In many applications, a sensor may be
acquiring a stream of images, and compressing each
rapidly for storage or transmission is essential. Parallel
CBIC algorithms are useful in such situations.
 The initial code for this project was taken from an
incomplete copy of thesis work by a graduate student.
The code, written in MATLAB, implemented serial
wavelet compression[9] of a segmented image.
Unfortunately, it was poorly written, with difficult to
decipher function names, poorly thought out file I/O, and
virtually zero comment lines. A significant effort was
undertaken to document the existing source before
parallelization could be attempted. Additionally, the code
did not determine the areas of interest in the image to be
compressed—it required a pre-existing mask on disk.

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

 A very rudimentary serial image segmentation code
was written to provide the mask for the compression step.
The areas of interest are designated by pixels that are a
certain percentage above or below the average brightness
of the entire image. For most of our test images, this was
surprisingly effective at picking out targets, such as tanks
in a SAR image. A better option for a mask generator
might be to use a trained, parallelized Support Vector
Machine. Other options include a mask generator based
on attention and perception, such as through symmetry.[2]
Due to the modularity of the implementation, a new mask
generator should be trivial to mate to the image
compression routine. Once the mask is generated, it is
written to disk in a PGM format. Due to the simplicity of
this particular segmentation method, effort was not taken
to parallelize it.
 The parallelization efforts centered upon using
pMatlab.[4] This implementation is limited due to the
inherently serial nature of the pre-existing code, and not
as efficient as it could be.
 Testing on HPC systems was successful and Figure 6
shows that selective compression of an image was
achieved. The left image is a sample SAR image showing
two columns of tanks flanking a road. The right image
shows the results of a parallel CBIC operation on the
source image using the simple masking algorithm
described earlier. Figure 6 shows that the masking
algorithm successfully selected the tanks as objects of
interest, as well as portions of the road and other objects
that “stick out” from the background. The background
portions of the image are then heavily compressed.
 Figure 7 shows median execution times over five
trials for the image shown in Figure 6 using a Pentium 4
cluster. A small benefit is seen by adding a second
processor; however, execution times increase afterwards.
More efficient code may produce better results.

4. Results

 The authors now have three rudimentary applications
that demonstrate that the algorithms can be implemented
in parallel MATLAB. While the implementations may be
limited (the SVM classifier, for example, only has one
available kernel), they provide a proof-of-concept as well
as a starting code base should a DoD user wish to apply
any of these algorithms to their problem.

Acknowledgements

 This publication was made possible through support
provided by DoD HPCMP PET activities through
Mississippi State University under contract. The opinions
expressed herein are those of the author(s) and do not

necessarily reflect the views of the DoD or Mississippi
State University.

References

1. Burges, Christopher J.C., “A Tutorial on Support Vector
Machines for Pattern Recognition.” In Data Mining and
Knowledge Discovery, volume 2, Kluwer Academic Publishers,
Boston, MA, 1998.
2. Gesú, Vito Di and Cesare Valenti, “Detection of Regions of
Interest Via the Pyramid Discrete Symmetry Transform.” In
Advances in Computer Vision, Springer, New York, 1997.
3. Graf, H.-P., E. Cosatto, L. Bottou, I. Dourdanovic, and V.
Vapnik, “Parallel Support Vector Machines: The Cascade
SVM.” In Advances in Neural Information Processing Systems,
volume 17, MIT Press, Cambridge, MA, 2005.
4. Kepner, Jeremy, “pMatlab: Parallel Matlab Toolbox.”
http://www.ll.mit.edu/pMatlab/, accessed May 19, 2006.
5. Kepner, Jeremy, “Parallel Programming with MatlabMPI.”
http://www.ll.mit.edu/MatlabMPI/, accessed May 19, 2006.
6. Byron J. T. Morgan, Applied Stochastic Modelling. New
York: Oxford U. Press Inc., 2000, ch. 7.
7. Platt., J., “Fast Training of Support Vector Machines Using
Sequential Minimal Optimization.” In Advances in Kernel
Methods – Support Vector Learning, MIT Press, Cambridge,
MA, 1998.
8. Platt., J., “Using sparseness and analytic QP to speed training
of support vector machines.” In Advances in Neural Information
Processing Systems, volume 13, MIT Press, Cambridge, MA,
1999.
9. Topiwala, Pankaj, ed., Wavelet Image and Video
Compression, Kluwer Academic Publishers, Boston, MA, 1998.

Figure 1. Simple two-layer cascade SVM

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

Figure 2. Sample output of a trained SVM with training

vectors in a checkerboard pattern

Figure 5. MCMC median execution time in seconds
versus number of processors for 1000 samples with

1000 burn-in iterations from the distribution shown in
Figure 4

Figure 6. CBIC compression of a sample SAR image

Figure 3. SVM execution time in seconds versus
number of processors for 10000 samples from the

distribution shown in Figure 3

 Figure 7. CBIC median execution time in seconds
versus number of processors for the picture shown in

Figure 6

Figure 4. Sample MCMC output for a 2-D normal
distribution

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

