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1.  Introduction  
 
 The parallel MATLAB implementations used for this 
project are MatlabMPI[1] and pMatlab[1], both developed 
by Dr. Jeremy Kepner at MIT-LL.  MatlabMPI is based 
on the Message Passing Interface standard, in which 
processes coordinate their work and communicate by 
passing messages among themselves.  The pMATLAB 
library supports parallel array programming in MATLAB.  
The user program defines arrays that are distributed 
among the available processes.  Although communication 
between processes is actually done through message 
passing, the details are hidden from the user.    
  
2. Objective  
 
 The objective of this PET project was to develop 
parallel MATLAB code for selected algorithms that are of 
interest to the Department of Defense (DoD) 
Signal/Image Processing (SIP) community and to run the 
code on the HPCMP systems.  The algorithms selected for 
parallel MATLAB implementation were a Support Vector 
Machine (SVM) classifier, Metropolis-Hastings Markov 
Chain Monte Carlo (MCMC) simulation, and Content-
Based Image Compression (CBIC).   
  
3. Methodology  
  
3.1. SVM  
 
 SVMs[1] are used for classification, regression, and 
density estimation, and they have applications in SIP, 
machine learning, bioinformatics, and computational 
science.  In a typical classification application, a set of 
labeled training data is used to train a classifier, which is 
then used to classify unlabeled test data.  The training of 
an SVM classifier may be posed as an optimization 
problem.  Typically, the training vectors are mapped to a 
higher-dimensional space using a kernel function, and the 
linear separating hyperplane with the maximal margin 

between classes is found in this space.  Some typical 
choices for kernel functions are linear, polynomial, 
sigmoid, and Radial Basis Functions (RBF).  SVM 
training involves optimizing over a number of parameters 
for the best performance and is usually done using a 
search procedure.   
 The chosen implementation of the SVM classifier is 
the “Sequential Minimal Optimization” algorithm.[7,8]  
SMO operates by iteratively reducing the problem to a 
single pair of points that may be solved linearly.  The 
problem is parallelized by passing subsets to nodes in the 
cluster, and recombining the solved subsets to give a 
partially solved problem.  After reaching the “tip” of the 
Cascade, the trained data set is passed back to the original 
nodes to test for convergence.  This process is repeated 
until the support vectors have converged on the solution 
to the problem as defined by all training points satisfying 
the KKT conditions.  
 This deliverable demonstrates that toy datasets can be 
run through an SVM classifier implemented with the 
SMO algorithm with a Cascade parallelization approach[3] 
as shown in Figure 1, completely within native MATLAB 
and MatlabMPI.[5]  An example output is shown in 
Figure 2.  Figure 3 shows the median SVM algorithm 
execution time versus number of processors for five trials 
on a Pentium 4 cluster using 10000 samples in the 
checkerboard pattern of Figure 2.  Execution is fast in all 
cases, with some possible benefit from added processors.  
However, it appears that communication overhead may 
start to outweigh this benefit as a larger number of 
processors are used.  There are clear improvements that 
could be made to the codes (including tweaking the 
Cascade code to encourage faster convergence and adding 
implementations for alternative kernel functions), but this 
is an encouraging proof-of-concept that should scale 
reasonably well to larger problems.  
 
3.2. MCMC  
 
 The MCMC algorithm is used to draw independent 
and identically distributed (IID) random variables from a 
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distribution π (x), which may be defined over a high-
dimensional space.  In many cases of interest, it is 
impossible to sample π (x) directly.  MCMC algorithms 
play an important role in image processing, machine 
learning, statistics, physics, optimization, and 
computational science.  Applications include traditional 
Monte Carlo methods, such as integration, and generating 
IID random variables for simulations.  MCMC also has 
numerous applications in the realm of Bayesian inference 
and learning, such as model parameter estimation, image 
segmentation, DNA sequence segmentation, and stock 
market forecasting, to name a few.  
 We have successfully implemented the MCMC 
algorithm in MATLAB, MatlabMPI, and pMATLAB.  
The algorithm lends itself naturally to parallel computing, 
so both the MatlabMPI and pMATLAB versions may be 
run efficiently on multiple processing nodes.  The code is 
modular and designed to be customized by the user to 
simulate any desired probability distribution, including 
multivariate distributions.  
 The MCMC algorithm works by generating a 
sequence of variables or vectors Xi using a Markov chain.  
The probability distribution of Xi approaches some 
desired distribution π (x) as i → ∞.  The update at each 
step is accomplished using the Metropolis-Hastings 
algorithm.[6]  After some “burn-in” period, the current 
value of Xi is taken as a sample of π (x).  The only 
requirement on π (x) is that a weighting function, or 
unnormalized density function, may be calculated at each 
value of x.    
 The algorithm has two parts:  1) proposing a value 
for Xi + 1 given the value of Xi, based on a proposal density 
function, and 2) accepting or rejecting the proposed value 
with some probability.  The proposal density function in 
the general case takes the form q(a,b), where a is the 
value of Xi and b is the proposed value for Xi + 1 .  In our 
implementation, proposals are restricted to the form b = a 
+ R, where R is a random variable with a probability 
density function p(r).  The function p(r) need not be 
symmetric.  
 The proposed value of Xi + 1 is accepted with 

probability α, where ( )
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value is not accepted, then Xi + 1 = Xi.  Note that α is 
calculated using the unnormalized density function for the 
target density π (x).  If the proposal density is symmetric, 
p(r) = p(−r) and the second factor disappears.  
 In our implementation, the user provides functions 
for the target and proposal density functions, as well as 
the number of burn-in iterations to use between samples, 
and the number of samples to be drawn.  One of our goals 
was to make it easy for users to customize the code to 
generate other probability distributions, use different 
proposal densities, and change various parameters.  Two 

examples are included with the code.  The first example 
simulates samples from a bivariate normal distribution 
using a uniform proposal density.  The second example 
simulates samples from a Rayleigh distribution using an 
asymmetric proposal density.  
 The problem of generating independent samples of a 
random variable is naturally parallel.  Both of the parallel 
versions of the algorithm simply divide the number of 
samples to be generated among the available processors.  
Each processor generates its share of the total samples 
separately from the others.  The samples are then 
combined into one output file.  Figure 4 shows an 
example output.  The left graph shows the desired 
distribution:  a two-dimensional normal distribution with 
zero mean and a non-diagonal covariance matrix.  The 
right graph shows 1000 samples generated by the MCMC 
routine using a uniform proposal density function.  
Figure 5 shows the median time over five trials to 
generate these 1000 samples using 1000 burn-in iterations 
between samples on a Pentium 4 cluster.  The execution 
time decreases with diminishing returns as more 
processors are added.  
  
3.3. CBIC  
 
 A typical image compression system applies the same 
compression strategy to the entire image, effectively 
spreading the quantization error uniformly over the 
image.  This effectively limits the compression ratio to the 
maximum that can be tolerated for the important and 
relevant portions of the image.  However, in many 
applications, the portion of the image that is of interest 
may be small compared to the entire image.  For example, 
in a SAR image taken from an aircraft, only the portion of 
the image containing the target of interest needs to be 
preserved with high quality; the rest of the image can be 
compressed quite heavily.  This leads to the idea of CBIC, 
in which selected portions of the image are compressed 
losslessly, while the rest of the image is compressed at a 
high ratio.  In many applications, a sensor may be 
acquiring a stream of images, and compressing each 
rapidly for storage or transmission is essential.  Parallel 
CBIC algorithms are useful in such situations.  
 The initial code for this project was taken from an 
incomplete copy of thesis work by a graduate student.  
The code, written in MATLAB, implemented serial 
wavelet compression[9] of a segmented image.  
Unfortunately, it was poorly written, with difficult to 
decipher function names, poorly thought out file I/O, and 
virtually zero comment lines.  A significant effort was 
undertaken to document the existing source before 
parallelization could be attempted.  Additionally, the code 
did not determine the areas of interest in the image to be 
compressed—it required a pre-existing mask on disk.  
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 A very rudimentary serial image segmentation code 
was written to provide the mask for the compression step.  
The areas of interest are designated by pixels that are a 
certain percentage above or below the average brightness 
of the entire image.  For most of our test images, this was 
surprisingly effective at picking out targets, such as tanks 
in a SAR image.  A better option for a mask generator 
might be to use a trained, parallelized Support Vector 
Machine.  Other options include a mask generator based 
on attention and perception, such as through symmetry.[2]  
Due to the modularity of the implementation, a new mask 
generator should be trivial to mate to the image 
compression routine.  Once the mask is generated, it is 
written to disk in a PGM format.  Due to the simplicity of 
this particular segmentation method, effort was not taken 
to parallelize it.  
 The parallelization efforts centered upon using 
pMatlab.[4]  This implementation is limited due to the 
inherently serial nature of the pre-existing code, and not 
as efficient as it could be.  
 Testing on HPC systems was successful and Figure 6 
shows that selective compression of an image was 
achieved.  The left image is a sample SAR image showing 
two columns of tanks flanking a road.  The right image 
shows the results of a parallel CBIC operation on the 
source image using the simple masking algorithm 
described earlier.  Figure 6 shows that the masking 
algorithm successfully selected the tanks as objects of 
interest, as well as portions of the road and other objects 
that “stick out” from the background.  The background 
portions of the image are then heavily compressed.  
 Figure 7 shows median execution times over five 
trials for the image shown in Figure 6 using a Pentium 4 
cluster.  A small benefit is seen by adding a second 
processor; however, execution times increase afterwards.  
More efficient code may produce better results.  
  
4.  Results  
 
 The authors now have three rudimentary applications 
that demonstrate that the algorithms can be implemented 
in parallel MATLAB.  While the implementations may be 
limited (the SVM classifier, for example, only has one 
available kernel), they provide a proof-of-concept as well 
as a starting code base should a DoD user wish to apply 
any of these algorithms to their problem.  
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Figure 1. Simple two-layer cascade SVM 
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Figure 2. Sample output of a trained SVM with training 

vectors in a checkerboard pattern 

 

Figure 5. MCMC median execution time in seconds 
versus number of processors for 1000 samples with 

1000 burn-in iterations from the distribution shown in 
Figure 4 

 

 
Figure 6. CBIC compression of a sample SAR image 

 

Figure 3. SVM execution time in seconds versus 
number of processors for 10000 samples from the 

distribution shown in Figure 3 
 

 Figure 7. CBIC median execution time in seconds 
versus number of processors for the picture shown in 

Figure 6 

Figure 4. Sample MCMC output for a 2-D normal 
distribution 
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