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Abstract 
 

 Octave and Python are open source alternatives to 
MATLAB, which is widely used by the High Performance 
Computing Modernization Program (HPCMP) 
community.  These languages are two well known 
examples of high-level scripting languages that promise 
to increase productivity without compromising 
performance on HPC systems.  In this paper, we report 
our work and experience with these two non-traditional 
programming languages at the HPCMP Centers.  We 
used a representative sample of SIP codes for the study, 
with special emphasis given to the understanding of issues 
such as portability, degree of complexity, productivity and 
suitability of Octave and Python to address Signal/Image 
Processing (SIP) problems on the HPCMP HPC 
platforms.  We implemented a relatively simple two-
dimensional (2-D) FFT and a more complex image 
enhancement algorithm in Octave and Python and 
benchmarked these SIP codes on several HPCMP 
platforms, paying special attention to usability, 
productivity and performance aspects.  Moreover, we 
performed a thorough benchmark containing important 
low level SIP core functions and algorithms and 
compared the outcome with the corresponding results for 
MATLAB.  We found that the capabilities of these 
languages are comparable to MATLAB and they are 
powerful enough to efficiently implement complex SIP 
algorithms.  Productivity and performance results for 
each language vary depending on the specific task and 
the availability of high level functions in each system to 
address such tasks.  Therefore, the choice of the best 
language to use in a particular instance will strongly 
depend upon the specifics of the SIP application that 
needs to be addressed.  We concluded that Octave and 
Python look like promising tools that may provide an 
alternative to MATLAB without compromising 
performance and productivity.  Their syntax and 
functionality are similar enough to MATLAB to present a 

very shallow learning curve for experienced MATLAB 
users.   
 
1.  Introduction  
 
 The new emphasis of high end computing systems is 
rapidly evolving towards productivity and value rather 
than traditional HPC standards such as raw theoretical 
peak computing performance.  Total end-user computing 
life-cycle costs and mission responsiveness are becoming 
increasingly critical to operational scenarios of modern 
Department of Defense (DoD) and homeland defense 
systems.  To address these urgent but complex needs, 
researchers’ idea-to-solution or time-to-solution is 
becoming more important than raw computing capacity.  
Ultimately, the goal is to decrease the time-to-solution, 
which means decreasing both the execution time and 
development time of an application on a particular 
system.   
 There is an increasing recognition that high-level 
languages, and in particular, scripting languages such as 
MATLAB, Octave, and Python may provide enormous 
productivity gains in developing technical and scientific 
code.  With the HPC emphasis rapidly shifting to high 
productivity metrics, where productivity and value are 
more important than raw performance; modern high-level 
languages promise to make HPCs easier and more 
productive to use.  As clearly demonstrated by the 
immense success of products such as MATLAB, time to 
solution is becoming one of the major metrics of value to 
technical users, which includes: time to cast the physical 
problem into suitable algorithms; time to write and debug 
the computer code that expresses those algorithms; time 
to optimize the code; time to compute the desired results; 
time to analyze and visualize those results; and time to 
refine the analysis into improved understanding of the 
original problem that enables scientific or engineering 
advances.  High-level scripting languages promise to 
decrease time to solution in HPC systems by promoting 
ease of use, code reusability, transparent access to highly 
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optimized libraries, portable performance and isolation 
from the inherent complexities of HPC low level 
programming.  In addition, MATLAB, Octave and Python 
enjoy a very large and active open source user community 
that constantly contributes algorithms and improvements 
to the base products.  Of course, in the case of MATLAB 
there is also commercial support for the parent company, 
The MathWorks, and several third party companies that 
produce a wide variety of toolboxes (collections of 
specialized application code).  This makes these 
languages a very attractive option to address the complex 
computational and analysis challenges of the SIP, IMT, 
CEA, CCM, and other communities.   
 Until recently, the technical community mostly used 
high-level scripting languages for serial code 
development in high end PCs and workstations.  This 
limited its use to performing prototyping studies and low 
scale studies.  If a user needed to perform realistic 
simulations or process very large datasets the execution 
time could be weeks or even months.  If the dataset sizes 
were too large to load into the desktop memory or the 
results were required in hours instead of days, the only 
viable option was to translate the code into C or 
FORTRAN and parallelize the resulting code by hand 
using low level programming models like MPI or 
OpenMP, and then execute on a batch oriented HPC 
system.  Needless to say, this approach is very expensive, 
error-prone, and time-consuming.  Moreover, this 
approach tends to shift the focus from the computational 
science problem to a very complex parallel programming 
task with the undesired consequence that the time to 
solution dramatically increases.  Each of these steps may 
take several months, therefore scientists and engineers are 
limited to how much iteration to the algorithms and 
models they may make.  Notice that this all happens 
before they ever get to actual utilization of their models, 
solving the problems they have set out to solve.  More 
than 75 percent of the time to solution is spent 
programming the models for use on HPC platforms, 
rather than developing and refining them up front, or 
using them in production mode to make decisions and 
discoveries.  Fortunately, as demonstrated by the success 
of products such as MATLAB and its parallel extensions, 
high-level scripting languages are slowly starting to 
evolve into valuable HPC languages that may enable a 
very productive computing environment in which the user 
becomes empowered as the borders between the desktop 
and the HPC environment blur and time to solution 
decreases dramatically.   
 We looked at rapid prototyping languages with 
respect to portability, suitability to number crunching, and 
the size of the user community.  Based on these criteria 
we decided to investigate two languages: Octave and 
Python.  We endeavored to evaluate the usability, 
portability, performance, and scalability aspects of Octave 

and Python on HPCMP resources versus the MATLAB 
standard with special emphasis in usability and 
productivity aspects of these two packages.   
 
2.  Methodology  
 
2.1. 2D FFT  
 
 To begin testing the feasibility of Octave and Python 
for HPCMP platforms, a simple SIP algorithm was 
implemented in each language.  The algorithm is the two-
dimensional fast Fourier transform (2D FFT).  For this 
relatively simple task, Octave and Python appeared 
equally easy to use.  Similarly as with MATLAB, both 
languages have the advantage of command-line 
interpreters for testing code.  Also, like MATLAB, 
Octave and Python have access to optimized 2D FFT 
algorithms that are ready-to-use and much faster than 
manually coded implementations.   
 
2.2. Pattern Matching Algorithm  
 
 To further test the feasibility of Octave and Python 
for HPCMP platforms, a more complex SIP algorithm 
was then implemented in each language.  The algorithm is 
a pattern matching algorithm in which a template image is 
located within a field image.  The particular algorithm we 
used is based on the paper Real-Time Pattern Matching 
Using Projection Kernels by Yacov Hel-Or and Hagit 
Hel-Or (IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 27:9, September 2005).  The 
algorithm uses an efficient scheme to project both the 
template image and windows, or areas, of the field image 
onto two-dimensional Walsh-Hadamard (WH) kernels.  A 
lower bound between the Euclidean distances of the 
template and windows of the field may be calculated from 
these projections.  Field windows with low distances to 
the template are possible matches.  Only the first few 
projections are needed for good performance.  The first 
projection may be omitted to obtain a pattern matching 
algorithm that is invariant with respect to illumination, 
though this can sometimes lead to poorer results in 
general.  The time complexity of computation may be 
reduced by two orders of magnitude compared to 
traditional approaches, though it uses more memory.  One 
limitation of this algorithm is that the template must be 
square with side lengths that are a power of two.   
 Our algorithm searches for the window in the field 
with the lowest distance from the template using three to 
four WH kernel projections.  It can search across different 
scalings and clockwise rotations of the template that are 
specified by the user.  Actually, the algorithm scales and 
rotates the field for better accuracy and because of the 
restrictions on the template size, but conceptually this can 
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be thought of as scaling and rotating the template.  The 
algorithm assumes that there is at most one instance of the 
template in the field, and that this instance lies entirely 
within the image.  If it finds an instance of the template in 
the field, it creates an image file containing the grayscale 
version of the field with the located template pattern 
outlined in red.  If the field window with the lowest 
distance results in a match that lies only partially in the 
field, the algorithm reports that no match was found and 
does not create an output image.   
 Overall, Python seemed to be the best language for 
this application.  Python has a command-line interpreter 
that can be used to test small bits of code, and this speeds 
up development.  The Python language also has very 
good, built-in support for list types that make complex 
structures easy to manage.  It is simple to access, add, and 
subtract items from list and sequence types, and it is easy 
to iterate over a list.  The support for classes makes code 
more manageable and makes code reuse easier.  For this 
particular application, the Python Imaging Library is a 
bug-free and easy way to access and manipulate images.  
Installation of the Python Imaging Library did pose some 
problems, but they were resolved.   
 Octave, like Python, does have a command-line 
interpreter.  Unfortunately, it does not support classes, 
thus making the code less organized and harder to reuse.  
Moreover, for this algorithm, it required several external 
applications like OctaveForge and ImageMagick, making 
the already difficult installation of Octave even more 
difficult.  Octave is also the slowest to execute for this 
algorithm.  One upside is that Octave code is very similar 
to MATLAB, so MATLAB code that does not use classes 
or other unsupported functions can be transferred to 
Octave quite readily.  However, the difficulties in 

installation as well as the long execution times made 
Octave a difficult choice for this application.   
 
2.3. Benchmarks  
 
 For this study, three sets of benchmarks were run for 
Octave, Python and MATLAB on a variety of HPCMP 
Linux clusters across the country:  Powell and JVN at 
ARL MSRC, HHPC at AFRL/IF, and Seafarer at SSC-
SD.  The first set is for the 2D FFT, the second is for the 
pattern matching algorithm, and the third is a set of 
general benchmarks that were originally available for 
Octave and MATLAB and we ported to Python.   
 
2.3.1. 2D FFT Benchmarks  
 
 Table 1 shows the average runtimes for the 2D FFT 
for each language on various HPCMP platforms.  The 
data show that Octave, Python, and MATLAB are fairly 
close in performance, with Octave being slightly faster on 
some machines and Python on others.  The reason for this 
is that Python, Octave, and MATLAB have FFT functions 
either built-in or as part of a library.  These FFT functions 
are actually using interfaces to FORTRAN for Octave, C 
code for Python, and probably optimized C code for 
MATLAB.  As it is easy to appreciate, this is a clear 
instance where Octave or Python are excellent 
alternatives to MATLAB.  For example on the Seafarer 
cluster MATLAB is not available.  However, users of this 
platform still may take advantage of the availability of 
powerful and easy to use FFT algorithms thanks to the 
availability of Octave and Python on this machine.  
 

 
 

Table 1. Average times over three trials each for the 2D FFT.  The 2D FFT was performed three times for each 
language on random square matrices of image data (values 0–255) with sizes 512×512, 1024×1024, and 2048×2048. 

Octave MATLAB Python  

Powell JVN HHPC Seafarer Powell JVN HHPC Seafarer Powell JVN HHPC Seafarer 
512 0.129 0.078 0.111 0.139 0.131 0.091 0.160 N/A 0.116 0.076 0.15 0.103 

1024 0.515 0.314 0.55 0.561 0.574 0.461 0.682 N/A 0.469 0.315 0.6142 0.450 

2D
 F

FT
 

2048 2.112 1.353 2.059 2.253 2.298 1.665 2.416 N/A 1.977 1.306 2.716 1.730 

Total 2.755 1.744 2.72 2.953 3.003 2.227 3.258 N/A 2.562 1.697 3.478 2.283 
Mean 0.918 0.581 0.907 0.984 1.001 0.742 1.086 N/A 0.854 0.566 1.1593 0.761 

 
 
2.3.2. Pattern Matching Algorithm Benchmarks  
 
 Table 2 shows run times for the pattern matching 
algorithm.  Each time shown in the table is the average 
taken over three trials. The tests are as follows:  

• SIP Application 1 – searches for the template in 
the field at a rotation of -11º and a scale of 1.1 
with no illumination invariance.  

• SIP Application 2 – searches for the template in 
the field at rotations in increments of 1º between 
-5º and 5º and at scales in increments of .1 
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between 1 and 1.5 with no illumination 
invariance.  

• SIP Application 3 – searches for the template in 
the field with no rotation and no scaling with 
illumination invariance.  

• SIP Application 4 – searches for the template in 
the field at a rotation of 15º at a scale of 1 with 
no illumination invariance.  

 

 
 

Table 2. Average run times over three trials each for the pattern matching algorithm.  Mean* is the trimmed 
geometric mean. 

Octave MATLAB Python  

Powell JVN HHPC Seafarer Powell JVN HHPC Seafarer Powell JVN HHPC Seafarer 
1 47.8 18.23 N/A 26.76 5.451 2.960 N/A N/A 22.06 9.605 25.26 18.365 

2 760 328.3 N/A 527.97 100.6 61.71 N/A N/A 537.1 264.7 589.63 447.765 

3 17.14 7.748 N/A 11.49 1.741 1.109 N/A N/A 10.02 4.073 8.446 7.111 SI
P 

A
pp

lic
at

io
n 

4 29.94 13.66 N/A 20.76 3.730 2.308 N/A N/A 18.1 7.474 20.221 14.984 

Total 854.9 368 N/A 586.98 111.51 68.08 N/A N/A 587.3 285.9 634.55 488.225 
Mean 207.3 91.99 N/A 146.74 27.88 17.02 N/A N/A 146.8 71.47 160.89 122.056 
Mean* 37.83 15.78 N/A 23.57 3.030 2.295 N/A N/A 19.98 8.473 22.601 16.588 

 
 
 Times marked as N/A are unavailable due to 
installation problems or software unavailability on the 
specific platform being tested.  The data show that 
MATLAB is much faster than Python and Octave for this 
application, and Python is substantially faster than 
Octave.  Due to the complexity of the code, it is difficult 
to determine the exact reason for this.  Some possible 
explanations are that there are substantial speed 
differences in the many image processing functions 
available for each language, that memory management is 
done more efficiently in some languages than in others 
(this is a relatively memory intensive algorithm), or that 
due to differences in some of the available image 
processing functions, extra coding was required in some 
of the languages.  However, we want to emphasize that 
even for complex problems like the Pattern Matching 
algorithm Octave and Python are useful alternatives to 
MATLAB.  For example, despite the complete lack of 
MATLAB and the Image Processing Toolbox on 
Seafarer, this platform has been enabled for tackling 
complex SIP problems due to the recent availability of the 
Octave and Python open source solutions.  
 
2.3.3. General Benchmarks  
 
 A series of benchmarks for MATLAB, Octave, and 
other languages may be found online at 
http://www.sciviews.org/benchmark/.  These benchmarks 
are more general in nature, though they do focus on 
matrix operations that are extremely important for SIP 
and other CTA applications. In order to do matrix 
operations in Python, the NumPy package was used.  

Table 3 shows the results for Octave, MATLAB, and 
Python.  
 The tests are organized into three categories:  matrix 
calculation, matrix function, and programming.  The 
individual tests are as follows:  

• I.1 – Creation, transposition, and deformation of 
a 1500×1500 matrix.  

• I.2 – Creation of an 800×800 normally 
distributed random matrix and taking the 30th 
power of all its elements.  

• I.3 – Sorting of 2,000,000 random values.  
• I.4 – 700×700 cross-product matrix (b = a′ * a).  
• I.5 – Linear regression over a 600×600 matrix (b 

= a\b′).  
• II.1 – Fast Fourier transform over 800,000 

values.  
• II.2 – Eigenvalues of a 320×320 random matrix.  
• II.3 – Determinant of a 650×650 random matrix.  
• II.4 – Cholesky decomposition of a 900×900 

matrix.  
• II.5 – Inverse of a 400×400 random matrix.  
• III.1 – 750,000 Fibonacci numbers calculation.  
• III.2 – Creation of a 2250×2250 Hilbert Matrix.  
• III.3 – Grand common divisors of 70,000 pairs 

(recursively).  
• III.4 – Creation of a 220×220 Toeplitz matrix.  
• III.5 – Escoufier's method on a 37×37 random 

matrix. 
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Table 3. More general benchmarking results.  Each entry is an average over three trials.  All times are in seconds.  
Mean* and Overall Mean* are trimmed (two extremes eliminated) geometric means. 

Octave MATLAB Python  

Powell JVN HHPC Seafarer Powell JVN HHPC Seafarer Powell JVN HHPC Seafarer 
I.1 0.82 0.39 1.85 1.23 0.38 0.20 0.40 N/A N/A 0.53 1.36 0.99 

I.2 0.09 0.20 0.15 0.07 0.53 0.25 0.58 N/A N/A 0.20 0.16 0.09 

I.3 0.87 0.58 6.86 0.69 0.66 0.43 0.70 N/A N/A 0.93 4.01 2.59 

I.4 3.07 3.70 1.76 2.29 0.25 0.22 0.34 N/A N/A 3.96 4.41 3.53 M
at

rix
 

C
al

cu
la

tio
n 

I.5 0.67 0.82 0.66 0.54 0.11 0.11 0.13 N/A N/A 1.57 3.18 2.17 

 Mean* 0.78 057 1.29 0.77 0.37 0.22 0.43 N/A N/A 0.91 2.59 1.77 

II.1 1.14 0.53 1.14 1.05 0.31 0.18 0.34 N/A N/A 0.04 0.07 0.05 

II.2 0.86 0.97 2.46 0.67 0.80 0.49 0.88 N/A N/A 0.74 1.34 0.98 

II.3 0.84 1.03 0.83 0.66 0.10 0.07 0.11 N/A N/A 0.58 1.27 0.89 

II.4 0.46 1.20 0.39 0.37 0.11 0.09 0.12 N/A N/A 0.98 2.23 1.58 M
at

rix
 

Fu
nc

tio
ns

 

II.5 0.53 0.73 0.36 0.42 0.08 0.67 0.08 N/A N/A 0.43 0.95 0.66 

 Mean* 0.73 0.90 0.72 0.57 0.15 0.20 0.17 N/A N/A 0.57 1.17 0.83 

III.1 0.49 0.54 0.60 0.40 1.11 0.36 1.23 N/A N/A 0.52 0.53 0.38 

III.2 0.68 0.50 0.57 0.69 0.49 0.32 0.51 N/A N/A 0.51 0.70 0.60 

III.3 0.37 0.26 0.57 0.26 0.31 1.31 0.38 N/A N/A 0.01 0.02 0.02 

III.4 2.21 1.16 1.49 1.45 0.00 0.00 0.00 N/A N/A 0.04 0.12 0.10 

Pr
og

ra
m

m
in

g 

III.5 2.58 2.06 1.40 2.14 0.75 0.40 0.83 N/A N/A 1.68 3.47 1.80 

 Mean* 0.90 0.68 0.78 0.74 0.48 0.36 0.54 N/A N/A 0.21 0.35 0.28 

Total 15.68 14.67 21.09 12.96 5.99 5.11 6.65 N/A N/A 12.71 23.81 16.45 
Overall 
Mean* 0.80 0.70 0.90 0.69 0.30 0.25 0.34 N/A N/A 0.48 1.02 0.74 

 
 
 We attempted to write the Python test so that it is 
coded like it is in Octave or MATLAB.  Deviations in test 
times are then due to either inherent differences in the 
language, the coding of the algorithm, or the system on 
that it is run.  It should be noted that Octave has an 
advantage over Python for some of the tests in this 
benchmark since it has an extensive number of built-in 
and optimized matrix functions, though the overall 
trimmed geometric means for Octave and Python are on 
the same order of magnitude.  Also, it is clear that 
MATLAB is substantially faster than Octave and Python 
for these set of tests.  As mentioned before, the N/A 
column for MATLAB at Seafarer is due to the 
unavailability of MATLAB in that platform.  Also, for 
some reason that we could not trace, the set for Python 
was not able to complete on the Powell cluster.  
Therefore, we did not include those results.  Again, even 
though performance-wise MATLAB appears superior to 
Octave and Python for this test, Octave and Python are 
acceptable alternatives to MATLAB and their importance 
may not be underestimated, especially on a platform such 
as Seafarer where MATLAB is not available. 

3.  Results  
 
 For this project we have successfully installed and 
used Octave and Python to code two SIP algorithms: a 
simple 2D FFT and a more complex pattern matching 
algorithm.  These algorithms along with another more 
general benchmark that was originally available for 
Octave and MATLAB were used to benchmark the 
languages on various HPCMP systems and compare with 
the de facto standard for high level scripting languages, 
MATLAB.   
 The 2D FFT was relatively simple to code in all three 
languages.  In fact for Octave and MATLAB a single 
source code may be used.  The more complex pattern 
matching algorithm was more difficult to code and 
revealed some of the pros and cons of each language.  
Python and Octave have built-in command line 
interpreters like MATLAB.  Python has support for 
classes as MATLAB does, while Octave does not.  
Python also has a great deal of functions available, though 
some do not come with the standard installation.  Octave 
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also has a lot of functions available, however many are 
packaged with outside programs such as Octave-Forge 
and ImageMagick.   
 The 2D FFT benchmarks showed Python and Octave 
to be about equally fast as MATLAB.  The pattern 
matching benchmark showed MATLAB to be the fastest, 
followed by Python, followed by Octave.  The algorithm 
is quite complex, however, so the exact reason for the 
difference in runtimes between Octave and Python is 
difficult to determine.  In addition, the more general 
benchmarks, which contain many important low level 
functions used in SIP problems, showed Octave and 
Python to be about equally fast.  MATLAB’s superior 
performance for the pattern matching benchmark and the 
more generic benchmarks most likely is due to its just-in-
time (JIT) accelerator technology.   
 Octave and Python have their strengths and 
weaknesses.  Both are powerful enough to implement a 
complex algorithm in a very efficient manner.  We 
concluded that productivity and performance results for 
each language vary depending on the specific task and the 
availability of high level functions in each system to 

address such tasks.  Therefore, the choice of the best 
language to use in a particular instance will strongly 
depend upon the specifics of the SIP problems to be 
solved.  However, Octave and Python look like promising 
tools that may provide an alternative to MATLAB 
without compromising productivity and with acceptable 
performance.  Most importantly, their syntax and 
functionality are similar enough to MATLAB to present a 
very shallow learning curve for experienced MATLAB 
users and are the sole choices for MATLAB- like 
programming in several HPCMP platforms not supported 
by The MathWorks, Inc.    
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