
Octave and Python: High-Level Scripting Languages Productivity and
Performance Evaluation

Juan Carlos Chaves, John Nehrbass, Brian Guilfoos, Judy Gardiner, Stanley Ahalt, Ashok
Krishnamurthy, Jose Unpingco, Alan Chalker, Andy Warnock, and Siddharth Samsi

Ohio Supercomputer Center, Columbus, OH
{jchaves, nehrbass, guilfoos, judithg, ahalt, ashok, unpingo, alanc, awarnok, samsi}@osc.edu

Abstract

 Octave and Python are open source alternatives to
MATLAB, which is widely used by the High Performance
Computing Modernization Program (HPCMP)
community. These languages are two well known
examples of high-level scripting languages that promise
to increase productivity without compromising
performance on HPC systems. In this paper, we report
our work and experience with these two non-traditional
programming languages at the HPCMP Centers. We
used a representative sample of SIP codes for the study,
with special emphasis given to the understanding of issues
such as portability, degree of complexity, productivity and
suitability of Octave and Python to address Signal/Image
Processing (SIP) problems on the HPCMP HPC
platforms. We implemented a relatively simple two-
dimensional (2-D) FFT and a more complex image
enhancement algorithm in Octave and Python and
benchmarked these SIP codes on several HPCMP
platforms, paying special attention to usability,
productivity and performance aspects. Moreover, we
performed a thorough benchmark containing important
low level SIP core functions and algorithms and
compared the outcome with the corresponding results for
MATLAB. We found that the capabilities of these
languages are comparable to MATLAB and they are
powerful enough to efficiently implement complex SIP
algorithms. Productivity and performance results for
each language vary depending on the specific task and
the availability of high level functions in each system to
address such tasks. Therefore, the choice of the best
language to use in a particular instance will strongly
depend upon the specifics of the SIP application that
needs to be addressed. We concluded that Octave and
Python look like promising tools that may provide an
alternative to MATLAB without compromising
performance and productivity. Their syntax and
functionality are similar enough to MATLAB to present a

very shallow learning curve for experienced MATLAB
users.

1. Introduction

 The new emphasis of high end computing systems is
rapidly evolving towards productivity and value rather
than traditional HPC standards such as raw theoretical
peak computing performance. Total end-user computing
life-cycle costs and mission responsiveness are becoming
increasingly critical to operational scenarios of modern
Department of Defense (DoD) and homeland defense
systems. To address these urgent but complex needs,
researchers’ idea-to-solution or time-to-solution is
becoming more important than raw computing capacity.
Ultimately, the goal is to decrease the time-to-solution,
which means decreasing both the execution time and
development time of an application on a particular
system.
 There is an increasing recognition that high-level
languages, and in particular, scripting languages such as
MATLAB, Octave, and Python may provide enormous
productivity gains in developing technical and scientific
code. With the HPC emphasis rapidly shifting to high
productivity metrics, where productivity and value are
more important than raw performance; modern high-level
languages promise to make HPCs easier and more
productive to use. As clearly demonstrated by the
immense success of products such as MATLAB, time to
solution is becoming one of the major metrics of value to
technical users, which includes: time to cast the physical
problem into suitable algorithms; time to write and debug
the computer code that expresses those algorithms; time
to optimize the code; time to compute the desired results;
time to analyze and visualize those results; and time to
refine the analysis into improved understanding of the
original problem that enables scientific or engineering
advances. High-level scripting languages promise to
decrease time to solution in HPC systems by promoting
ease of use, code reusability, transparent access to highly

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

optimized libraries, portable performance and isolation
from the inherent complexities of HPC low level
programming. In addition, MATLAB, Octave and Python
enjoy a very large and active open source user community
that constantly contributes algorithms and improvements
to the base products. Of course, in the case of MATLAB
there is also commercial support for the parent company,
The MathWorks, and several third party companies that
produce a wide variety of toolboxes (collections of
specialized application code). This makes these
languages a very attractive option to address the complex
computational and analysis challenges of the SIP, IMT,
CEA, CCM, and other communities.
 Until recently, the technical community mostly used
high-level scripting languages for serial code
development in high end PCs and workstations. This
limited its use to performing prototyping studies and low
scale studies. If a user needed to perform realistic
simulations or process very large datasets the execution
time could be weeks or even months. If the dataset sizes
were too large to load into the desktop memory or the
results were required in hours instead of days, the only
viable option was to translate the code into C or
FORTRAN and parallelize the resulting code by hand
using low level programming models like MPI or
OpenMP, and then execute on a batch oriented HPC
system. Needless to say, this approach is very expensive,
error-prone, and time-consuming. Moreover, this
approach tends to shift the focus from the computational
science problem to a very complex parallel programming
task with the undesired consequence that the time to
solution dramatically increases. Each of these steps may
take several months, therefore scientists and engineers are
limited to how much iteration to the algorithms and
models they may make. Notice that this all happens
before they ever get to actual utilization of their models,
solving the problems they have set out to solve. More
than 75 percent of the time to solution is spent
programming the models for use on HPC platforms,
rather than developing and refining them up front, or
using them in production mode to make decisions and
discoveries. Fortunately, as demonstrated by the success
of products such as MATLAB and its parallel extensions,
high-level scripting languages are slowly starting to
evolve into valuable HPC languages that may enable a
very productive computing environment in which the user
becomes empowered as the borders between the desktop
and the HPC environment blur and time to solution
decreases dramatically.
 We looked at rapid prototyping languages with
respect to portability, suitability to number crunching, and
the size of the user community. Based on these criteria
we decided to investigate two languages: Octave and
Python. We endeavored to evaluate the usability,
portability, performance, and scalability aspects of Octave

and Python on HPCMP resources versus the MATLAB
standard with special emphasis in usability and
productivity aspects of these two packages.

2. Methodology

2.1. 2D FFT

 To begin testing the feasibility of Octave and Python
for HPCMP platforms, a simple SIP algorithm was
implemented in each language. The algorithm is the two-
dimensional fast Fourier transform (2D FFT). For this
relatively simple task, Octave and Python appeared
equally easy to use. Similarly as with MATLAB, both
languages have the advantage of command-line
interpreters for testing code. Also, like MATLAB,
Octave and Python have access to optimized 2D FFT
algorithms that are ready-to-use and much faster than
manually coded implementations.

2.2. Pattern Matching Algorithm

 To further test the feasibility of Octave and Python
for HPCMP platforms, a more complex SIP algorithm
was then implemented in each language. The algorithm is
a pattern matching algorithm in which a template image is
located within a field image. The particular algorithm we
used is based on the paper Real-Time Pattern Matching
Using Projection Kernels by Yacov Hel-Or and Hagit
Hel-Or (IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27:9, September 2005). The
algorithm uses an efficient scheme to project both the
template image and windows, or areas, of the field image
onto two-dimensional Walsh-Hadamard (WH) kernels. A
lower bound between the Euclidean distances of the
template and windows of the field may be calculated from
these projections. Field windows with low distances to
the template are possible matches. Only the first few
projections are needed for good performance. The first
projection may be omitted to obtain a pattern matching
algorithm that is invariant with respect to illumination,
though this can sometimes lead to poorer results in
general. The time complexity of computation may be
reduced by two orders of magnitude compared to
traditional approaches, though it uses more memory. One
limitation of this algorithm is that the template must be
square with side lengths that are a power of two.
 Our algorithm searches for the window in the field
with the lowest distance from the template using three to
four WH kernel projections. It can search across different
scalings and clockwise rotations of the template that are
specified by the user. Actually, the algorithm scales and
rotates the field for better accuracy and because of the
restrictions on the template size, but conceptually this can

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

be thought of as scaling and rotating the template. The
algorithm assumes that there is at most one instance of the
template in the field, and that this instance lies entirely
within the image. If it finds an instance of the template in
the field, it creates an image file containing the grayscale
version of the field with the located template pattern
outlined in red. If the field window with the lowest
distance results in a match that lies only partially in the
field, the algorithm reports that no match was found and
does not create an output image.
 Overall, Python seemed to be the best language for
this application. Python has a command-line interpreter
that can be used to test small bits of code, and this speeds
up development. The Python language also has very
good, built-in support for list types that make complex
structures easy to manage. It is simple to access, add, and
subtract items from list and sequence types, and it is easy
to iterate over a list. The support for classes makes code
more manageable and makes code reuse easier. For this
particular application, the Python Imaging Library is a
bug-free and easy way to access and manipulate images.
Installation of the Python Imaging Library did pose some
problems, but they were resolved.
 Octave, like Python, does have a command-line
interpreter. Unfortunately, it does not support classes,
thus making the code less organized and harder to reuse.
Moreover, for this algorithm, it required several external
applications like OctaveForge and ImageMagick, making
the already difficult installation of Octave even more
difficult. Octave is also the slowest to execute for this
algorithm. One upside is that Octave code is very similar
to MATLAB, so MATLAB code that does not use classes
or other unsupported functions can be transferred to
Octave quite readily. However, the difficulties in

installation as well as the long execution times made
Octave a difficult choice for this application.

2.3. Benchmarks

 For this study, three sets of benchmarks were run for
Octave, Python and MATLAB on a variety of HPCMP
Linux clusters across the country: Powell and JVN at
ARL MSRC, HHPC at AFRL/IF, and Seafarer at SSC-
SD. The first set is for the 2D FFT, the second is for the
pattern matching algorithm, and the third is a set of
general benchmarks that were originally available for
Octave and MATLAB and we ported to Python.

2.3.1. 2D FFT Benchmarks

 Table 1 shows the average runtimes for the 2D FFT
for each language on various HPCMP platforms. The
data show that Octave, Python, and MATLAB are fairly
close in performance, with Octave being slightly faster on
some machines and Python on others. The reason for this
is that Python, Octave, and MATLAB have FFT functions
either built-in or as part of a library. These FFT functions
are actually using interfaces to FORTRAN for Octave, C
code for Python, and probably optimized C code for
MATLAB. As it is easy to appreciate, this is a clear
instance where Octave or Python are excellent
alternatives to MATLAB. For example on the Seafarer
cluster MATLAB is not available. However, users of this
platform still may take advantage of the availability of
powerful and easy to use FFT algorithms thanks to the
availability of Octave and Python on this machine.

Table 1. Average times over three trials each for the 2D FFT. The 2D FFT was performed three times for each
language on random square matrices of image data (values 0–255) with sizes 512×512, 1024×1024, and 2048×2048.

Octave MATLAB Python

Powell JVN HHPC Seafarer Powell JVN HHPC Seafarer Powell JVN HHPC Seafarer
512 0.129 0.078 0.111 0.139 0.131 0.091 0.160 N/A 0.116 0.076 0.15 0.103

1024 0.515 0.314 0.55 0.561 0.574 0.461 0.682 N/A 0.469 0.315 0.6142 0.450

2D
 F

FT

2048 2.112 1.353 2.059 2.253 2.298 1.665 2.416 N/A 1.977 1.306 2.716 1.730

Total 2.755 1.744 2.72 2.953 3.003 2.227 3.258 N/A 2.562 1.697 3.478 2.283
Mean 0.918 0.581 0.907 0.984 1.001 0.742 1.086 N/A 0.854 0.566 1.1593 0.761

2.3.2. Pattern Matching Algorithm Benchmarks

 Table 2 shows run times for the pattern matching
algorithm. Each time shown in the table is the average
taken over three trials. The tests are as follows:

• SIP Application 1 – searches for the template in
the field at a rotation of -11º and a scale of 1.1
with no illumination invariance.

• SIP Application 2 – searches for the template in
the field at rotations in increments of 1º between
-5º and 5º and at scales in increments of .1

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

between 1 and 1.5 with no illumination
invariance.

• SIP Application 3 – searches for the template in
the field with no rotation and no scaling with
illumination invariance.

• SIP Application 4 – searches for the template in
the field at a rotation of 15º at a scale of 1 with
no illumination invariance.

Table 2. Average run times over three trials each for the pattern matching algorithm. Mean* is the trimmed
geometric mean.

Octave MATLAB Python

Powell JVN HHPC Seafarer Powell JVN HHPC Seafarer Powell JVN HHPC Seafarer
1 47.8 18.23 N/A 26.76 5.451 2.960 N/A N/A 22.06 9.605 25.26 18.365

2 760 328.3 N/A 527.97 100.6 61.71 N/A N/A 537.1 264.7 589.63 447.765

3 17.14 7.748 N/A 11.49 1.741 1.109 N/A N/A 10.02 4.073 8.446 7.111 SI
P

A
pp

lic
at

io
n

4 29.94 13.66 N/A 20.76 3.730 2.308 N/A N/A 18.1 7.474 20.221 14.984

Total 854.9 368 N/A 586.98 111.51 68.08 N/A N/A 587.3 285.9 634.55 488.225
Mean 207.3 91.99 N/A 146.74 27.88 17.02 N/A N/A 146.8 71.47 160.89 122.056
Mean* 37.83 15.78 N/A 23.57 3.030 2.295 N/A N/A 19.98 8.473 22.601 16.588

 Times marked as N/A are unavailable due to
installation problems or software unavailability on the
specific platform being tested. The data show that
MATLAB is much faster than Python and Octave for this
application, and Python is substantially faster than
Octave. Due to the complexity of the code, it is difficult
to determine the exact reason for this. Some possible
explanations are that there are substantial speed
differences in the many image processing functions
available for each language, that memory management is
done more efficiently in some languages than in others
(this is a relatively memory intensive algorithm), or that
due to differences in some of the available image
processing functions, extra coding was required in some
of the languages. However, we want to emphasize that
even for complex problems like the Pattern Matching
algorithm Octave and Python are useful alternatives to
MATLAB. For example, despite the complete lack of
MATLAB and the Image Processing Toolbox on
Seafarer, this platform has been enabled for tackling
complex SIP problems due to the recent availability of the
Octave and Python open source solutions.

2.3.3. General Benchmarks

 A series of benchmarks for MATLAB, Octave, and
other languages may be found online at
http://www.sciviews.org/benchmark/. These benchmarks
are more general in nature, though they do focus on
matrix operations that are extremely important for SIP
and other CTA applications. In order to do matrix
operations in Python, the NumPy package was used.

Table 3 shows the results for Octave, MATLAB, and
Python.
 The tests are organized into three categories: matrix
calculation, matrix function, and programming. The
individual tests are as follows:

• I.1 – Creation, transposition, and deformation of
a 1500×1500 matrix.

• I.2 – Creation of an 800×800 normally
distributed random matrix and taking the 30th
power of all its elements.

• I.3 – Sorting of 2,000,000 random values.
• I.4 – 700×700 cross-product matrix (b = a′ * a).
• I.5 – Linear regression over a 600×600 matrix (b

= a\b′).
• II.1 – Fast Fourier transform over 800,000

values.
• II.2 – Eigenvalues of a 320×320 random matrix.
• II.3 – Determinant of a 650×650 random matrix.
• II.4 – Cholesky decomposition of a 900×900

matrix.
• II.5 – Inverse of a 400×400 random matrix.
• III.1 – 750,000 Fibonacci numbers calculation.
• III.2 – Creation of a 2250×2250 Hilbert Matrix.
• III.3 – Grand common divisors of 70,000 pairs

(recursively).
• III.4 – Creation of a 220×220 Toeplitz matrix.
• III.5 – Escoufier's method on a 37×37 random

matrix.

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

Table 3. More general benchmarking results. Each entry is an average over three trials. All times are in seconds.
Mean* and Overall Mean* are trimmed (two extremes eliminated) geometric means.

Octave MATLAB Python

Powell JVN HHPC Seafarer Powell JVN HHPC Seafarer Powell JVN HHPC Seafarer
I.1 0.82 0.39 1.85 1.23 0.38 0.20 0.40 N/A N/A 0.53 1.36 0.99

I.2 0.09 0.20 0.15 0.07 0.53 0.25 0.58 N/A N/A 0.20 0.16 0.09

I.3 0.87 0.58 6.86 0.69 0.66 0.43 0.70 N/A N/A 0.93 4.01 2.59

I.4 3.07 3.70 1.76 2.29 0.25 0.22 0.34 N/A N/A 3.96 4.41 3.53 M
at

rix

C
al

cu
la

tio
n

I.5 0.67 0.82 0.66 0.54 0.11 0.11 0.13 N/A N/A 1.57 3.18 2.17

 Mean* 0.78 057 1.29 0.77 0.37 0.22 0.43 N/A N/A 0.91 2.59 1.77

II.1 1.14 0.53 1.14 1.05 0.31 0.18 0.34 N/A N/A 0.04 0.07 0.05

II.2 0.86 0.97 2.46 0.67 0.80 0.49 0.88 N/A N/A 0.74 1.34 0.98

II.3 0.84 1.03 0.83 0.66 0.10 0.07 0.11 N/A N/A 0.58 1.27 0.89

II.4 0.46 1.20 0.39 0.37 0.11 0.09 0.12 N/A N/A 0.98 2.23 1.58 M
at

rix

Fu
nc

tio
ns

II.5 0.53 0.73 0.36 0.42 0.08 0.67 0.08 N/A N/A 0.43 0.95 0.66

 Mean* 0.73 0.90 0.72 0.57 0.15 0.20 0.17 N/A N/A 0.57 1.17 0.83

III.1 0.49 0.54 0.60 0.40 1.11 0.36 1.23 N/A N/A 0.52 0.53 0.38

III.2 0.68 0.50 0.57 0.69 0.49 0.32 0.51 N/A N/A 0.51 0.70 0.60

III.3 0.37 0.26 0.57 0.26 0.31 1.31 0.38 N/A N/A 0.01 0.02 0.02

III.4 2.21 1.16 1.49 1.45 0.00 0.00 0.00 N/A N/A 0.04 0.12 0.10

Pr
og

ra
m

m
in

g

III.5 2.58 2.06 1.40 2.14 0.75 0.40 0.83 N/A N/A 1.68 3.47 1.80

 Mean* 0.90 0.68 0.78 0.74 0.48 0.36 0.54 N/A N/A 0.21 0.35 0.28

Total 15.68 14.67 21.09 12.96 5.99 5.11 6.65 N/A N/A 12.71 23.81 16.45
Overall
Mean* 0.80 0.70 0.90 0.69 0.30 0.25 0.34 N/A N/A 0.48 1.02 0.74

 We attempted to write the Python test so that it is
coded like it is in Octave or MATLAB. Deviations in test
times are then due to either inherent differences in the
language, the coding of the algorithm, or the system on
that it is run. It should be noted that Octave has an
advantage over Python for some of the tests in this
benchmark since it has an extensive number of built-in
and optimized matrix functions, though the overall
trimmed geometric means for Octave and Python are on
the same order of magnitude. Also, it is clear that
MATLAB is substantially faster than Octave and Python
for these set of tests. As mentioned before, the N/A
column for MATLAB at Seafarer is due to the
unavailability of MATLAB in that platform. Also, for
some reason that we could not trace, the set for Python
was not able to complete on the Powell cluster.
Therefore, we did not include those results. Again, even
though performance-wise MATLAB appears superior to
Octave and Python for this test, Octave and Python are
acceptable alternatives to MATLAB and their importance
may not be underestimated, especially on a platform such
as Seafarer where MATLAB is not available.

3. Results

 For this project we have successfully installed and
used Octave and Python to code two SIP algorithms: a
simple 2D FFT and a more complex pattern matching
algorithm. These algorithms along with another more
general benchmark that was originally available for
Octave and MATLAB were used to benchmark the
languages on various HPCMP systems and compare with
the de facto standard for high level scripting languages,
MATLAB.
 The 2D FFT was relatively simple to code in all three
languages. In fact for Octave and MATLAB a single
source code may be used. The more complex pattern
matching algorithm was more difficult to code and
revealed some of the pros and cons of each language.
Python and Octave have built-in command line
interpreters like MATLAB. Python has support for
classes as MATLAB does, while Octave does not.
Python also has a great deal of functions available, though
some do not come with the standard installation. Octave

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

also has a lot of functions available, however many are
packaged with outside programs such as Octave-Forge
and ImageMagick.
 The 2D FFT benchmarks showed Python and Octave
to be about equally fast as MATLAB. The pattern
matching benchmark showed MATLAB to be the fastest,
followed by Python, followed by Octave. The algorithm
is quite complex, however, so the exact reason for the
difference in runtimes between Octave and Python is
difficult to determine. In addition, the more general
benchmarks, which contain many important low level
functions used in SIP problems, showed Octave and
Python to be about equally fast. MATLAB’s superior
performance for the pattern matching benchmark and the
more generic benchmarks most likely is due to its just-in-
time (JIT) accelerator technology.
 Octave and Python have their strengths and
weaknesses. Both are powerful enough to implement a
complex algorithm in a very efficient manner. We
concluded that productivity and performance results for
each language vary depending on the specific task and the
availability of high level functions in each system to

address such tasks. Therefore, the choice of the best
language to use in a particular instance will strongly
depend upon the specifics of the SIP problems to be
solved. However, Octave and Python look like promising
tools that may provide an alternative to MATLAB
without compromising productivity and with acceptable
performance. Most importantly, their syntax and
functionality are similar enough to MATLAB to present a
very shallow learning curve for experienced MATLAB
users and are the sole choices for MATLAB- like
programming in several HPCMP platforms not supported
by The MathWorks, Inc.

Acknowledgements

 This publication was made possible through support
provided by DoD HPCMP PET activities through
Mississippi State University under contract. The opinions
expressed herein are those of the author(s) and do not
necessarily reflect the views of the DoD or Mississippi
State University.

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

