
Enhancements to MatlabMPI: Easier Compilation, Collective Communication,
and Profiling

Judy Gardiner, John Nehrbass, Juan Carlos Chaves, Brian Guilfoos, Stanley Ahalt, Ashok
Krishnamurthy, Jose Unpingco, Alan Chalker, and Siddharth Samsi

Ohio Supercomputer Center, Columbus, OH
{judithg, nehrbass, jchaves, guilfoos, ahalt, ashok, unpingo, alanc, samsi}@osc.edu

Abstract

 This paper provides a brief overview of several
enhancements made to the MatlabMPI suite. MatlabMPI
is a pure MATLAB code implementation of the core parts
of the MPI specifications. The enhancements provide a
more attractive option for HPCMP users to design
parallel MATLAB code. Intelligent compiler
configuration tools have also been delivered to further
isolate MatlabMPI users from the complexities of the
UNIX environments on the various HPCMP systems.
Users are now able to install and use MatlabMPI with
less difficulty, greater flexibility, and increased
portability. Collective communication functions were
added to MatlabMPI to expand functionality beyond the
core implementation. Profiling capabilities, producing
TAU (Tuning and Analysis Utility) trace files, are now
offered to support parallel code optimization. All of these
enhancements have been tested and documented on a
variety of HPCMP systems. All material, including
commented example code to demonstrate the usefulness of
MatlabMPI, is available by contacting the authors.

1. Introduction

 There is an increasing recognition that High-Level
Languages, and in particular scripting languages such as
The MathWorks’ MATLAB, provide enormous
productivity gains in developing technical and scientific
code. MATLAB is widely used in academia and industry
(almost 1 million users by some estimates) and has
emerged as an important software code used by many
Department of Defense (DoD) scientists and engineers.
The attraction of MATLAB is that it combines an easy-to-
use scientific programming language with a common
environment for prototyping, coding, and visualization. A
wide variety of add-on toolboxes addressing a number of
specialized application areas, along with a very large and
active open source user community, make MATLAB the

software platform of choice for many IMT, SIP, and CEA
users. The data analysis and visualization features offer
excellent postprocessing capabilities and thus extend the
user base to include users from the CCM, CWO, and CFD
communities.
 The popularity of MATLAB among DoD users,
combined with growing memory and computational
requirements, established the need for MATLAB versions
able to leverage the power of high performance computers
(HPCs). In a typical scenario, a user develops a prototype
MATLAB algorithm on a limited computational resource,
such as a single processor PC or workstation. MATLAB
is chosen as the implementation language over other
traditional languages because 1) it is substantially easier
to collaborate with non computer science experts,
allowing nonexperts to make changes and experiment; 2)
it is interpretive and interactive; 3) it has excellent
debugging capabilities; 4) it has integrated help with
built-in example code; and 5) and the time to
implementation is typically several orders of magnitude
quicker.
 The next step is to modify the prototypical
parameters to solve real problems. This typically
increases memory requirements beyond what can be
accessed on the single processor PC or workstation, or it
results in long-running simulations that reduce
productivity or render the simulation impractical. The
traditional approach to handle these large problems has
been to translate the MATLAB code into C or
FORTRAN, parallelize the resulting C/FORTRAN code
using MPI or OpenMP, and then execute it on a HPC.
 But this is an expensive, error-prone and time-
consuming activity. Moreover, it is very difficult to
propagate changes in the MATLAB code to the
corresponding C code, especially since a single line of
MATLAB code may correspond to many lines of C code.
In practice this step is often outsourced to external
contractors and the connection between the algorithm
design team and the HPC code developers is lost.

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

 The need for new methodologies that allow parallel
development directly within the MATLAB environment
is a widely recognized, and thus many software solutions
are available that attempt to integrate MATLAB with
HPC systems.[1] MatlabMPI[2] is a software technique
developed by Dr. Jeremy Kepner at MIT Lincoln Labs
(MIT-LL) that is one of the leading technologies for
writing parallel MATLAB code. MatlabMPI allows
Message Passing Interface (MPI)[3] communication calls
to be embedded in MATLAB by implementing part of the
MPI specification in pure MATLAB code. Thus
MatlabMPI works anywhere MATLAB works.
MatlabMPI is open source, freely available, and
modifiable. This paper illustrates yet another example of
how enhancements are continually being added to the
suite to bring it closer to meeting the entire MPI
specification.
 MatlabMPI has grown quickly in popularity among
DoD users, and numerous requests for additional features
have been gathered. The OSC PET team delivered three
specific enhancements to MatlabMPI that make it easier
for DoD users to do parallel computations within
MATLAB. The enhancements are intelligent compiler
configuration tools, MPI collective communication calls,
and a profiling version of MatlabMPI. The remainder of
this paper addresses each of these enhancements.
Efficiency issues are addressed where relevant.
 In common computer science language, when a code
or script is submitted to the queuing system, it is said to
be running in “batch mode” and each instance of the
corresponding submission is called a “job”. This is not
consistent with the definition that The MathWorks uses
and often leads to confusion. For clarity, throughout the
rest of this paper, “batch mode” shall refer to code or
script submitted to a HPC queuing system and the
particular submission shall be called a “batch job” or
simply a “job”.

2. Intelligent Compiler Configuration Tools
for MatlabMPI

 The first extension to MatlabMPI is a set of
intelligent compiler configuration tools. The tools serve
two purposes. First, they make it easier for users to install
and use MatlabMPI on the HPCMP systems, isolating
them from the peculiarities of the UNIX environments
and increasing code portability. Second, they reduce the
impact of the subtle differences between running
MATLAB interactively and running it by submitting it to
a queuing system such as LSF. When MatlabMPI is used
in the “standard” interpretive mode, environment
variables, paths, and access to the MATLAB license
manager are all required and necessary elements for
successful code execution. Batch jobs often require slight

reconfigurations, and the changes are often not obvious to
users. With the compiler tools, many of the user
frustrations are eliminated and the results from jobs run in
batch are identical to interactive jobs.

2.1. MatlabMPI Compiler Tools

 MatlabMPI was first released (Version 0.95) in 2002
and was originally designed to work optimally on the
MIT computer systems. DoD HPCMP users must make
changes to this source code in order to run it on other
HPC systems. Particularly difficult issues occur when
running batch jobs. First note that a batch job may start
several hours to days after being submitted, with no
guarantee that resources at run time are identical to the
resources available at the time of submission. The
queuing system identifies resource requirements through
job control parameters and thus waits for requirements to
become available before running a job. Some centers
allow job control parameters to check license availability
as well as memory and processor resource availability,
ensuring that runtime requirements are met.
Unfortunately, the centers do not currently offer a
common set of control parameters, so the responsibility to
investigate and adjust code falls on each user, limiting
code portability.
 To solve this problem, the OSC PET team developed
a version of MatlabMPI that integrates with the
MATLAB compiler toolbox and generates executable
code and scripts that eliminate known interoperability
problems. The resulting executable code and scripts are
launched in parallel on both batch and interactive systems
alike and allow users to run MatlabMPI code with
significantly more processors than previously possible.
The Ohio Supercomputer Center (OSC) team refers to this
technology as the MatlabMPI compiler technology. The
first version of this technology, incorporated in the
Version 1.2 of MatlabMPI, is identified as MPI_cc and
was released to the public on 27 February 2004.
 The MathWorks constantly strives to improve its
product and consequently made significant advancements
in Release 14 of the MATLAB software. These changes
altered the way the compiler toolbox (Version 4.1)
worked, and consequently these changes required
modifications to the MPI_cc technology. Users found it
exceedingly difficult to modify the MatlabMPI source to
enable the MPI_cc components as the changes required
advanced knowledge of the encryption technology
embedded within the updated compiler toolbox. Users
requested that the next version of MatlabMPI provide
additional intelligence and return the promise of source
code that continues to be easy to both understand and
modify.
 This release provides such resources to the user
community. The team submitted these features along

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

with other modifications and improvements to MIT-LL
for peer review. After acceptance it is anticipated that a
third release of MatlabMPI will be available from the
MIT-LL website.[2] In the interim, this version is
available to the public through contacting the authors and
eventually will be posted on the OKC
(https://okc.erdc.hpc.mil/index.jsp) under the SIP portal.

2.2. MatlabMPI Compiler Install and Use

 This section summarizes a few key points on how to
install and use this toolbox. The full documentation
should be consulted before beginning installation.
 Installation is trivial, requiring no make files, external
libraries, or compilation. Specific configuration
instructions, such as pointing to a particular installed
version of MATLAB or selecting ssh versus rsh for
communication between processors, are handled exactly
the same as in previous versions and documented on the
MIT-LL web pages.
 Several HPCMP centers have created global installs
of MatlabMPI. It is strongly suggested that anyone using
this toolbox remove the global install from their
MATLAB path and instead use the code included with
this distribution. The path must be set in each MatlabMPI
code developed.
 This toolbox also solves the problem of executing
special commands (unique to a given system) prior to
running the MatlabMPI code. These commands can
include setting environment variables and library paths.
The solution involves a file called setup.sh, which
contains all the lines needed to run the code. The solution
for many of the HPCMP centers is included in the source
distribution.
 The MatlabMPI compiler technology mimics the
functionality of make files. The MPI_cc command is still
used to compile code as in previous releases; however the
new version is intelligent enough to compile code only if
changes have occurred since the last time it was compiled.
This saves time when several jobs are submitted to the
queue.

2.3. NSF Fixes

 The MatlabMPI code works best for communications
consisting of large messages and for codes that have a
large compute to communication ratios. There are,
however, times when many smaller messages must be
sent. On some systems, file latency and network issues
have caused NFS failures, which in turn cause the
MatlabMPI codes to fail. This version provides updated
versions of MPI_Recv and MPI_Send that greatly help to
reduce NFS failures.

2.4. Known Issues

 The new MATLAB compiler technology works
much differently than the previous version. In short, it
takes all the file dependencies and encrypts them. At run
time, the compiled version reads in the encrypted files and
decrypts them. This information is then passed to the
eval() function. If the code dynamically changes a path
variable, then the executable code could point to an
unencrypted source file. This will cause errors. At
present, the project team has not found a workaround to
this problem, but we are working on it. In the interim,
make sure that all paths are defined prior to using the
compiler.

3. MatlabMPI Collective Communication
Functions

 Another enhancement expands the MPI calls
available in MatlabMPI to include collective
communication calls. Although the functionality of
collective communication calls (e.g., broadcast, allreduce)
may be implemented using point-to-point communication
calls, doing so is tedious for the user. Previously, only the
broadcast (MPI_Bcast) function was available. The
additional functions are implemented in pure MATLAB
and preserve the “run anywhere” functionality of
MatlabMPI.

3.1. Background

 MatlabMPI currently implements the basic six
functions that are the core of the MPI point-to-point
communications standard. MPI also specifies a set of
collective communication functions. Collective
communication is defined as communication that involves
a group of processes. In MatlabMPI the process group
typically includes all the processes that are part of the
task.
 Collective communication functions specified in the
MPI standard include barrier synchronization, broadcast
from one process to all others, data gather from all
processes to one process, data scatter from one process to
all processes, complete data exchange, global reduction
operations (such as sum, max, min, and others), and
others. The MPI standard strictly defines the behavior of
its functions with regard to communication deadlocks,
race conditions, and interference between function calls.

3.2. Technical Overview

 The OSC team now offers a subset of the MPI
collective communication calls for MatlabMPI. In many

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

cases the basic functionality is implemented while less
essential options are omitted. Our goals remain to:

1. Implement the functions that are most useful for
DoD MATLAB applications.

2. Retain the “look and feel” of MatlabMPI.
3. Achieve reasonable efficiency.

 The new functions are simple to use, but the user
assumes the burden of ensuring that certain concurrency
problems do not occur, including communication
deadlocks and race conditions. This is most easily done
by using a different “tag” value for each communication
operation.
 The new MatlabMPI collective communication
functions are tuned for efficiency as much as is practical.
The algorithms and implementation used are described
below.

3.3. Implementation

 This section describes the functions that were
implemented and the algorithms that were used.

MPI_Barrier – Barrier synchronization. Each
process blocks until all processes in the
communication group have entered the call. The
algorithm used is the one used in MPICH[4], cited
there as the dissemination algorithm of Hensgen,
Finkel, and Manbet.

[5]

MPI_Reduce – Global reduction operation,
performed over all processes in the group.
Operations supported are global sum, global
product, global maximum, and global minimum.
The process designated as root receives the result.
The reduction is performed using a binomial tree
algorithm with the root process as root of the tree.
MPI_Allreduce – Global reduction operation with
the result returned to all processes in the group.
This function is implemented as a call to
MPI_Reduce followed by MPI_Bcast.
MPI_Gather – Gathers data from all processes to
the root. All processes send their data to the root.
The root concatenates the data in process rank
order.
MPI_Bcast – Broadcast from one process to all
others. This is a modification of the distributed
version of MPI_Bcast that fixes a bug and makes it
conform more closely to the MPI standard.

3.4. Utilization

 The MatlabMPI collective communication functions
consist of four user-callable functions and two support
functions. The functions and their calling sequences are
defined in the documentation included with the code,

which is available from the authors. All code is
compatible with MATLAB versions 6.5 and 7.1.

4. Profiling Version of MatlabMPI

 A profiling version of MatlabMPI allows
performance evaluation of MatlabMPI programs. The
profiler generates data in the TAU trace file format. TAU
trace files are converted into other formats for analysis by
a variety of programs, including Vampir.
 The profiling version of MatlabMPI has a “pure
MATLAB” runtime component plus a combined
MATLAB/C postprocessing program. The runtime
portion includes wrappers for the MatlabMPI functions to
be profiled (MPI_Send, MPI_Recv, MPI_Bcast,
MPI_Barrier) plus functions to record trace data in .mat
files. Functions are provided to allow tracing of user
functions as well. The code is designed to be extremely
easy to install and use. No modifications are made to the
actual MatlabMPI code, so upgrades are easy and
customizations maintained.
 The postprocessing program converts the trace data
in the .mat files to TAU trace files. It is a MATLAB
script that calls C/C++ functions from the TAU trace file
writer library. This portion of the profiler is more
cumbersome to install and use, but it does not have to run
on the system that the data was generated on. It is serial
code that can be run on any Linux/Unix system that has
MATLAB installed. The TAU libraries are freely
available.
 MATLAB’s builtin profile command was not
utilized, as proposed by Kim and Reuther[6] because it is
not TAU compatible. While the “history” option records
trace data, it is limited to 10,000 events, which limits
usability.

5. Conclusion

 With the enhancements developed by the OSC PET
team, MatlabMPI is a useful tool for HPCMP users who
need to run large or memory intense applications. All of
the enhancements have been tested on a variety of
HPCMP systems to demonstrate their usefulness.
 Intelligent compiler configuration tools isolate users
from the complexities of the UNIX environments on the
various HPCMP systems and provide significant
enhancement to functionality. Users install and use
MatlabMPI with less difficulty and greater flexibility.
 The addition of collective communication functions
to MatlabMPI makes certain common operations less
tedious to implement. Specifically, the global reduction
operations of sum, product, maximum, and minimum are
now available to the MatlabMPI programmer, along with
barrier synchronization and gather from all to one.

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

 Performance evaluation tools, including a profiling
version of MatlabMPI, enable users to profile and
improve their applications. These same tools support
studies that compare the performance of different parallel
MATLAB implementations.
 All codes developed for this project are available
from the authors and will become available on the OKC
(https://okc.erdc.hpc.mil/index.jsp).

Acknowledgements

 This publication was made possible through support
provided by DoD HPCMP PET activities through
Mississippi State University under contract. The opinions
expressed herein are those of the author(s) and do not
necessarily reflect the views of the DoD or Mississippi
State University.

References

1. Choy, R., “The Parallel Matlab Survey.”
http://supertech.lcs.mit.edu/~cly/survey.html, 2002.
2. MatlabMPI Web Site at http://www.ll.mit.edu/MatlabMPI.
3. Message Passing Interface Forum, “MPI: A Message-Passing
Interface Standard.” http://www.mpi-forum.org/.
4. MPICH – A Portable Implementation of MPI, http://www-
unix.mcs.anl.gov/mpi/mpich1/.
5. Hensgen, D., R. Finkel, and U. Manbet, “Two Algorithms for
Barrier Synchronization.” International Journal of Parallel
Programming, vol. 17, no. 1, pp.1–17, 1988.
6. Kim, H. and A. Reuther, “Profiling pMatlab and MatlabMPI
Applications Using the MATLAB 7 Profiler.” http://www.
ll.mit.edu/pMatlab/files/Profiling_pMatlab_MatlabMPI.pdf .

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

